
Zero-shot learning in 
extremely large Transformer 

models (GPT and CLIP)

Víctor Gallego
Komorebi AI & ICMAT



Fact 1. One of the core problems of ML...

Is the lack of labeled examples for a given task.

Almost every interesting task in industry requires supervised data:

● Sentiment analysis: positive and negative examples.
● Recommendation systems: ranking of the item: 

● Image classification: the classes of the objects:🐶 (dog), 🐱(cat), 👩 
(person) ... 



One of the core problems of ML...
What can you do if you don’t have an annotated dataset?

Mechanical Turk, 18th century:
● Human annotation & crowdsourcing:

○ Expensive (both in € and hours)
○ Boring
○ Doesn’t scale very well

● In this talk, we will focus on an alternative:

zero-shot learning



Fact 2. About the size of the models
State-of-the-art models in NLP and CV keep 

getting bigger and bigger (in parameter count)

This is similar to the Moore’s law of transistors.

Why is this?



The scaling law hypothesis of AI

See: “Scaling Laws for Neural Language Models”, https://arxiv.org/abs/2001.08361

Some people believe this is the way towards true artificial intelligence: 

“just make your model bigger”

https://arxiv.org/abs/2001.08361


The core ingredient: the Transformer
Introduced in 2017: “Attention is all you need”, https://arxiv.org/abs/1706.03762

The main block is: Self-attention is a way to correlate similar words in an 
example:

https://arxiv.org/abs/1706.03762


Can we use fact 2 to “solve” fact 1?

In this talk, we will explore several large-scale models that enable zero-shot learning



Contrastive learning
CLIP architecture, introduced in 2021, https://arxiv.org/abs/2103.00020

Trained over 400M pairs of 
(image, caption) from the internet.

Consists in two components:
● Image encoder
● Text encoder

Loss function is cross-correlation between 
the embeddings of the images and the 
associated texts.

https://arxiv.org/abs/2103.00020


Zero-shot classification
This contrastive learning approach 
enables the specification of “labels” 
only at inference time

Just compute the embeddings for each class:

the embedding for the image:

and a dot product to get the logits:



Zero-shot classification

It works very well for several standard
computer vision datasets

But still gaps with SOTA models using 
lots of training data



Zero-shot semantic search
Instead of fixing the textual labels and querying with images, we can do the 
opposite: keep the images fixed (like a database) and query them with text

a cat

a figurative painting 

an abstract painting Essentially, it is a glorified nearest neighbors search.

But in an extremely rich embedding space:



Demo time!

https://dev.komorebi.ai/art-explorer/

https://dev.komorebi.ai/art-explorer/


Zero-shot object detection
1. Using classical computer vision 

techniques, generate K 
regions of interest

2. Use CLIP to filter them, using: 
a. keywords (“dented metallic surface)
b. similar defects

We are using it in car damage 
detection, to generate labeled 
datasets of car defects.
https://insurmapp.com

https://insurmapp.com


Zero-shot object detection
1. Using classical computer vision 

techniques, generate K 
regions of interest

2. Use CLIP to filter them, using: 
a. keywords (“dented metallic surface)
b. similar defects

We are using it in car damage 
detection, to generate labeled 
datasets of car defects.
https://insurmapp.com

https://insurmapp.com


Language modeling
What if only textual data?

GPT-like language models consist in Transformer blocks trained using the 
following objective: autorregressive language modelling

paragraph current token / word

previous tokens

i.e. predict the next word given a sequence of words



Language modeling 2
We are using GPT-J, one of the biggest open-source models

● 6.7 billion parameters (around 32 GB of RAM)
● Trained over 800 GB of raw text from the internet

The Pile dataset, https://arxiv.org/abs/2101.00027

Turns out, sufficiently big models like this exhibit zero-shot capabilities

See, e.g., the GPT-3 paper https://arxiv.org/abs/2005.14165

https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2005.14165


Zero-shot learning with language models



Demo time!

https://github.com/vicgalle/gpt-j-api

https://github.com/vicgalle/gpt-j-api


What is the cost of a big language model?

Inference times (in seconds) for generating a sequence of length 32, 128, or 512 tokens



Stochastic Parrots
For the previous reasons, large scale language 
models are often called stochastic parrots.

⚠ Caution when deployed! ⚠
They will be reinforcing biases and social stereotypes
reflected in the data they were pretrained on.

See: “On the Dangers of Stochastic Parrots: 
Can Language Models Be Too Big?”

https://dl.acm.org/doi/10.1145/3442188.3445922
https://dl.acm.org/doi/10.1145/3442188.3445922


Let’s assume we have a very small dataset (N < 100). 
It’s very expensive to label more data

How do you fine-tune a large (+109 parameters) model?



Let’s assume we have a very small dataset (N < 100). 
It’s very expensive to label more data

How do you fine-tune a large (+109 parameters) model?

You shouldn’t.



Current approaches
Prompt engineering: what we have just seen

Soft prompt tuning: requires the training of a subset of the parameters
https://arxiv.org/abs/2104.08691v2

Wouldn’t it be great if we could learn from a few examples without modifying
the parameters of a large language model?

https://arxiv.org/abs/2104.08691v2


Functional Gradient Descent 1
The usual equation of gradient descent in ML:

Keep in mind that θ lives now in a really big space (+1 billion dimensions)

Very costly both in compute time and storage
Remember GPT-J takes around 32 GB of RAM, and you would have to host
a different copy for each fine-tuned task



Functional Gradient Descent 2
We can assume the model function f lives in a 

reproducing kernel Hilbert space (RKHS)

Under this assumption, f can be expressed as

and we can differentiate wrt to it (in a functional sense):

where the xi are a set of training examples (< 100, for few-shot setting)



Functional Gradient Descent 3
Thus instead of iterating like:

We iterate using this update rule:

Improved performance and storage cost for few-shot learning compared to 
finetuning/adapting in CLIP and language models: paper soon.

can be cachedsimilarity in last layers



Acknowledgements
Thanks to the TPU Research Cloud 
for providing compute resources

https://sites.research.google/trc/about/

https://sites.research.google/trc/about/


Special thanks to the Komorebi AI team

David GordoManuel Navarro David Gómez-UllateAlberto Torres

We are open to collaborations!!

https://komorebi.ai

https://komorebi.ai


Thank you!!

● victor.gallego@komorebi.ai
● Semantic search demo: https://dev.komorebi.ai/art-explorer/
● GPT-J API code and demos: https://github.com/vicgalle/gpt-j-api 

mailto:victor.gallego@komorebi.ai
https://dev.komorebi.ai/art-explorer/
https://github.com/vicgalle/gpt-j-api

