Complex Regression for Complex Data

Rosa M. Crujeiras and María Alonso-Pena

Statistics and Operations Research University of Santiago de Compostela (Spain)

New Bridges between Mathematics and Data Science

Motivation

- Complex is not always big (of course dimensionality poses challenges and it is a complexity)
- Complex by their intrinsic nature (even though they may be usual quantities)
- Complex by relations:

$$\mathbb{E}(Y|X=x) = m(x)$$
 (mean regression)

(the conditional mean approach may not be enough in some scenarios)

Goal of this talk: introduce a multimodal (complex) regression tool for circular (complex) data

Our example

- Escape behavior Φ (random circular variable)
- Stimulus: (robot) predator
- Experiment on larval zebrafish

Ipsilateral

Nair, A., Changsing, K., Stewart, W.J. and McHenry, M.J. (2017) Fish prey change strategy with the direction of a threat

Proceedings of the Royal Society B

Larvae escape direction: sample $\Phi_i \in (-\pi,\pi], \ i=1,\ldots,n$

Circular mean

$$\hat{\mu} = \operatorname{atan2}\left(\frac{1}{n}\sum_{i=1}^{n}\sin\Phi_{i}, \frac{1}{n}\sum_{i=1}^{n}\cos\Phi_{i}\right)$$

Density estimation: parametric model vs. nonparametric density

von Mises density

$$f(\phi;\mu,\kappa) = \frac{1}{2\pi I_0(\kappa)} \exp\{\kappa \cos(\phi - \mu)\}\$$

R.M. Crujeiras and M. Alonso-Pena (NBMDS)

kernel density estimator

$$\hat{f}(\phi;\kappa) = \frac{1}{n} \sum_{i=1}^{n} K_{\kappa}(\phi - \Phi_i)$$

In our example: (Θ_i, Φ_i) , $i = 1, \ldots, n$, stimulus direction and escape direction

The naïve approach ...

Nair, A., Changsing, K., Stewart, W.J. and McHenry, M.J. (2017) Fish prey change strategy with the direction of a threat

Proceedings of the Royal Society B

R.M. Crujeiras and M. Alonso-Pena (NBMDS)

In our example: (Θ_i, Φ_i) , $i = 1, \ldots, n$, stimulus direction and escape direction

Nair, A., Changsing, K., Stewart, W.J. and McHenry, M.J. (2017) Fish prey change strategy with the direction of a threat

Proceedings of the Royal Society B

R.M. Crujeiras and M. Alonso-Pena (NBMDS)

Circular regression

$$Y = m(\Theta) + \varepsilon \qquad \qquad \Phi = [m(X) + \varepsilon](\mathsf{mod}2\pi) \qquad \Phi = [m(\Theta) + \varepsilon](\mathsf{mod}2\pi)$$

 $\begin{array}{c} \text{Circular predictor} \\ \text{Real-valued response} \\ (\Theta, Y) \end{array}$

 $\begin{array}{c} \mbox{Real-valued predictor} \\ \mbox{Circular response} \\ (X, \Phi) \end{array}$

 $\begin{array}{c} \mbox{Circular predictor}\\ \mbox{Circular response}\\ (\Theta, \Phi) \end{array}$

In our example: (Θ_i, Φ_i) , $i = 1, \ldots, n$, stimulus direction and escape direction

Di Marzio, Panzera and Taylor (2012) Non-parametric regression for circular responses

Scandinavian Journal of Statistics

R.M. Crujeiras and M. Alonso-Pena (NBMDS)

Multimodal circular regression

Circular predictor Real-valued response (Θ, Y) $\begin{array}{c} \mbox{Real-valued predictor} \\ \mbox{Circular response} \\ (X, \Phi) \end{array}$

Circular predictor Circular response (Θ, Φ)

Multimodal circular regression: Circular predictor - Real-valued response

The regression multifunction is given by

$$M(\theta) = \left\{ y \in \mathbb{R} : \frac{\partial}{\partial y} f(y|\theta) = 0, \frac{\partial^2}{\partial y^2} f(y|\theta) < 0 \right\}$$

Estimation: indirect approach, estimating the conditional density

$$\hat{f}(y|\theta) = \frac{\sum_{i=1}^{n} K_{\kappa}(\theta - \Theta_i) L_h(y - Y_i)}{\sum_{i=1}^{n} K_{\kappa}(\theta - \Theta_i)}$$

Estimated regression multifunction:

$$\hat{M}(\theta) = \left\{ y \in \mathbb{R} : \frac{\partial}{\partial y} \hat{f}(y|\theta) = 0, \frac{\partial^2}{\partial y^2} \hat{f}(y|\theta) < 0 \right\}$$

R.M. Crujeiras and M. Alonso-Pena (NBMDS)

Computation of the modes: conditional mean shift algorithm

The critical point condition yields a fixed-point equation:

$$\frac{\partial}{\partial y}\hat{f}(y|\theta) = 0 \iff y = \frac{\sum_{i=1}^{n} K_{\kappa}(\theta - \Theta_{i})G\left(\frac{y - Y_{i}}{h}\right)Y_{i}}{\sum_{i=1}^{n} K_{\kappa}(\theta - \Theta_{i})G\left(\frac{y - Y_{i}}{h}\right)}$$

	-

Fukunaga, K. and Hostetler, L. (1975)

The estimation of the gradient of a density function, with applications in pattern recognition

IEEE Transactions on Information Theory

Chen, Y.C. et al. (2016) Nonparametric modal regression *The Annals of Statistics*

Cheng, Y. (1995)

Mean shift, mode seeking and clustering IEEE Transactions on Pattern Analysis and Machine Intelligence

Einbeck, J. and Tutz, G (2006)

Modelling beyond regression functions: an application of multimodal regression to speed-flow data Applied Statistics

Algorithm: circular predictor - real-valued response

Sample $\{(\Theta_i, Y_i)\}_{i=1}^n$, smoothing parameters κ and h.

- 1. Initialize mesh points $\mathcal{T} \subset (-\pi, \pi]$.
- 2. For each $\theta \in \mathcal{T}$, select starting points $y_0^{(1)}(\theta), ..., y_0^{(p)}(\theta)$.
- 3. For each $\theta \in \mathcal{T}$ and for k = 1, ..., p iterate until convergence:

$$y_{l+1}^{(k)} = \frac{\sum_{i=1}^{n} K_{\kappa}(\theta - \Theta_{i}) G\left(\frac{y_{l}^{(k)} - Y_{i}}{h}\right) Y_{i}}{\sum_{i=1}^{n} K_{\kappa}(\theta - \Theta_{i}) G\left(\frac{y_{l}^{(k)} - Y_{i}}{h}\right)}, \quad \text{with} \quad l = 0, 1, \dots$$

R.M. Crujeiras and M. Alonso-Pena (NBMDS)

Multimodal circular regression: Circular response

The variable Δ denotes a general covariate ($\Delta = X$ or $\Delta = \Theta$) The regression multifunction is given by

$$M(\delta) = \left\{ \phi \in \mathbb{S}^1 : \frac{\partial}{\partial \phi} f(\phi|\delta) = 0, \frac{\partial^2}{\partial \phi^2} f(\phi|\delta) < 0 \right\}$$

Zhang, Y. and Chen, Y.C. (To appear)

Kernel smoothing, mean shift and their learning theory with directional data Journal of Machine Learning Research

R.M. Crujeiras and M. Alonso-Pena (NBMDS)

Estimation of the regression multifunction (indirect approach)

• $\Delta = X$ (real-valued predictor)

$$\hat{f}(\phi|x) \frac{\sum_{i=1}^{n} L_h(x-X_i) K_\kappa(\phi - \Phi_i)}{\sum_{i=1}^{n} L_h(x-X_i)}$$

 $\blacktriangleright \Delta = \Theta \text{ (circular predictor)}$

$$\hat{f}(\phi|\theta) \frac{\sum_{i=1}^{n} K_{\nu}(\theta - \Theta_{i}) K_{\kappa}(\phi - \Phi_{i})}{\sum_{i=1}^{n} K_{\nu}(\theta - \Theta_{i})}$$

In short:

$$\hat{f}(\phi|\delta) = \frac{1}{n\hat{f}(\delta)} \sum_{i=1}^{n} w_{\delta}(\Delta_i) K_{\kappa}(\phi - \Phi_i), \quad \hat{f}(\delta) = \frac{1}{n} \sum_{i=1}^{n} w_{\delta}(\Delta_i)$$

Estimation of the regression multifunction

Estimated regression multifunction

$$\hat{M}(\delta) = \left\{ \phi \in \mathbb{S}^1 : \frac{\partial}{\partial \phi} \hat{f}(\phi|\delta) = 0, \frac{\partial^2}{\partial \phi^2} \hat{f}(\phi|x) < 0 \right\}$$

For the critical point condition:

$$\frac{\partial}{\partial \phi} \hat{f}(\phi|\delta) = \frac{\kappa c_{\kappa}}{n\hat{f}(\delta)} \sum_{i=1}^{n} w_{\delta}(\Delta_i) K'[\kappa(1 - \cos(\phi - \Phi_i))] \sin(\phi - \Phi_i)$$

R.M. Crujeiras and M. Alonso-Pena (NBMDS)

Estimation of the regression multifunction

Expanding the last expression and equating to zero, we get:

 $\phi = \operatorname{atan2}\left(S_{\delta}(\phi), C_{\delta}(\phi)\right)$

where we denote

$$S_{\delta}(\phi) = \sum_{i=1}^{n} w_{\delta}(\Delta_i) T(\phi - \Phi_i) \sin \Phi_i$$

$$C_{\delta}(\phi) = \sum_{i=1}^{n} w_{\delta}(\Delta_i) T(\phi - \Phi_i) \cos \Phi_i$$

and $T(\cdot)$ is proportional to $K'[\kappa(1-\cos(\cdot))]$.

Algorithm: circular response

Sample $\{(\Delta_i, \Phi_i)\}_{i=1}^n$, smoothing parameters κ and h/ν .

- 1. Initialize mesh points $\mathcal{S} \subset \mathbb{R}$ if $\Delta = X$ or $\mathcal{T} \subset (-\pi, \pi]$ if $\Delta = \Theta$.
- 2. For each $\delta \in \mathcal{S}$ (or $\delta \in \mathcal{T}$), select starting points $\phi_0^{(1)}(\delta), ..., \phi_0^{(p)}(\delta)$

3. For k = 1, ..., p iterate until convergence:

$$\phi_{l+1}^{(k)} = \operatorname{atan2}\left(\sum_{i=1}^n w_\delta(\Delta_i) T(\phi_l^{(k)} - \Phi_i) \sin \Phi_i, \sum_{i=1}^n w_\delta(\Delta_i) T(\phi_l^{(k)} - \Phi_i) \cos \Phi_i\right)$$

with $l = 0, 1, \ldots$

Behavior of the smoothing parameters

Fixed h, varying κ

Fixed κ , varying h

- The parameter associated to the predictor controls the smoothing
- The parameter associated to the response affects the number of estimated branches

Pointwise error for a real-valued response

$$\begin{split} \Lambda(\theta) &= \mathsf{Haus}(M(\theta), \hat{M}(\theta)) \\ \mathsf{Haus}(A, B) &= \max \left\{ \sup_{x \in A} d(x, B), \sup_{x \in B} d(x, A) \right\} \\ & d(x, A) &= \inf_{z \in A} |x - z| \end{split}$$

Pointwise error for a circular response

$$\begin{split} \tilde{\Lambda}(\delta) &= \widetilde{\mathsf{Haus}}(M(\delta), \hat{M}(\delta)) \\ \widetilde{\mathsf{Haus}}(A, B) &= \max \left\{ \sup_{x \in A} \tilde{d}(x, B), \sup_{x \in B} \tilde{d}(x, A) \right\} & \overbrace{}^{*} \overset{*}{\overset{*}} \overset{*}{\overset{*}} & \overbrace{}^{*} \overset{*}{\overset{*}} \\ \tilde{d}(x, A) &= \inf_{z \in A} 1 - \cos(x - z) \end{split}$$

		$\tau = 6$		$\tau = 8$		$\tau = 10$	
Model	(n_1, n_2)	В	CV	В	CV	В	CV
LC-1	(100, 100)	0.021	0.034	0.016	0.023	0.013	0.018
	(100, 200)	0.016	0.039	0.012	0.024	0.011	0.018
	(200, 200)	0.011	0.019	0.008	0.012	0.007	0.010
	(200, 300)	0.010	0.016	0.007	0.011	0.006	0.009
	(300, 300)	0.007	0.012	0.006	0.008	0.005	0.006
CC-1	(100, 100)	0.144	0.395	0.117	0.213	0.102	0.148
	(100, 200)	0.120	0.182	0.097	0.147	0.087	0.120
	(200, 200)	0.066	0.089	0.054	0.066	0.047	0.057
	(200, 300)	0.058	0.068	0.046	0.054	0.040	0.045
	(300, 300)	0.042	0.056	0.035	0.045	0.030	0.038

 $\widetilde{\mathsf{CMIE}}_m(\hat{M}) = \mathbb{E}\left[\int \tilde{\Lambda}(\delta) d\delta\right] \to 0 \text{ as } n \text{ grows}.$

B: benchmark (optimal) CV: modal cross-validation selector.

 τ : controls the data concentration (from less to more concentrated).

Back to the example: escape direction vs. predator direction approach

Mean regression: ipsilateral escape (from rostral approach); contralateral escape (from caudal approach).

Multimodal regression: two trends, ipsilateral/contralateral when stimulus appears from peripherical vision (rostral/caudal); third trend, contralateral, if stimulus is not peripherical.

Prediction sets

R.M. Crujeiras and M. Alonso-Pena (NBMDS)

Thanks!

$\label{eq:Grant PID2020-116587GB-I00 funded by} MCIN/AEI/10.13039/501100011033 \mbox{ and the European Union}.$

Alonso-Pena, M. and Crujeiras, R.M. (2021) Nonparametric multimodal regression for circular data *arXiV* (under 2nd revision)