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©Q Motivation: Energy analysis of buildings.
@ Smagorinsky turbulence model.

© Reduced Basis Model

@ A posteriori error estimation.

© Application: thermal comfort-oriented geometrical optimization of
peristyles.



Problem statement
Motivation: Energy analysis of buildings

e Official codes for energy analysis of buildings fail to accurately model the
air-wall heat exchange.

e Specifically addressed numerical models obtain a large error decrease
(1/3).

e There is a need for fast solvers to couple with these codes.

Figure: Numerical modelling of thermal behaviour of courtyard.



Problem statement
Smagorinsky turbulence model

We are interested in the (very) fast solution of the parametric Smagorinsky
turbulence model:

ou—V - ((v+rvs(u)Vu)+ (u-Vu+Vp=Ff in Qr,
V-u=0 inQT, (1)
+ initial and boundary conditions,
where vg(u) = Z (CShK)2|Vu|K|XK is the eddy diffusion.

KETh
e Oriented to thermal confort in architectural design.

@ Physical parameters: Reynolds number, Rayleigh number (buoyant
flows, thermal flows).

@ Geometrical parameters: Dimensions of building spaces.




Reduced Basis problem
Reduced Basis problem - steady case

e The Reduced Basis problem is defined by Galerkin projection as

Find Un(p) = (un(p), pn(1)) € Xy such that
{ S(Un(p), Vi ) = F(V; i) YV € Xi
where S is the Smagorinsky operator,
Xn = Span{&1,--- ,&on—1} X Span{ty1,--- ,¢¥n}: Reduced space

The solution Un(p) can be expressed as

(2)

2N-1 N-1
un(p) = D u()én, pu(p) =D pil(m)tbx
k=0 k=0

e The discrete problem is constructed from parameter-independent
matrices and tensors constructed off-line.

e The pair (velocity, pressure) spaces satisfies the inf-sup condition.

e Another possibility is pressure stabilization.




Reduced Basis problem
Greedy Algorithm

e The reduced space is constructed by a Greedy Algorithm:
Q Initialization

o Choose a (rich enough) discrete set of parameters Diyain.
o Randomly choose p; € Dyain and set X1 = Un(p4)-

@ Enrichment. Known Xpy_1, Compute

HN=argmax,cp . [lun(1)—ueruse ()] x

and set
Xn = Span{Xn—_1,un(pep)}-

For evolution problems a further reduction of the discrete space by
POD is needed.

@ The Greedy Algorithm is oriented to minimize the distance in
L>(D, X) between the reduced and the trust solutions. J




A posteriori error estimation

A posteriori error estimation: general framework

e In practice the error ||uy(pt) — utrust(pt)||x should be approximated by
an posteriori error bound, Apy(p).

e The Brezzi-Rappaz-Raviart Theory for approximation of regular branches
of non-linear variational problems is used.

e The tangent operator must be an isomorphism at each parameter of the
branch.

e The a posteriori estimation holds if the tangent operator is locally
Lipschitz-continuous.



A posteriori error estimation

A posteriori error estimation: Smagorinsky model

e The Smagorinsky operator is smoother than the Navier-Stokes one, due
to the eddy viscosity term.

e The following estimates for Euler 4 stable Finite Element discretisation
hold: For all U, = (up, pn), Vi = (vh, qn) € X,

105 (Un, ) = OS(Vi, )l x,xry < p7(1) [Un = Villx

where
X = 1%(0, T; H3(Q)3) x L3(0, T; Q)

endowed with the Hilbertian norm
1/2
I P)x = (10eul 2z + NolBagmy + 1p1B2iz) )

o — 2/3  for the evolution problem,
N 1 for the steady problem.



A posteriori error estimation

A posteriori error estimation: Smagorinsky model

In the evolution problem, this holds thanks to the enhanced estimates

Theorem

Assume that At < C h®/3. Then the solution (uy, pp) of the (P2 — P1)-
Finite Element + semi-implicit time Euler discretization of the
Smagorinsky model satisfies

[10cunll 22y + IV ull oo sy + Pl 22y < CW, hmin, 11 2(12))

e The condition At < C h%/3 is not very restrictive as in practice the grid
size h is determined in such a way that a part of the inertial spectrum is
resolved.



A posteriori error estimation

A posteriori error estimation: Smagorinsky model

e This allows to construct an error estimator

An(p) = An(p)(pT(p), e(p), B(1))

in terms of

@ The constant p7(w) appearing in the Lipschitz or Holder estimate for
the tangent operator.

@ The dual norm e(p) of the residual R(Uy) = A(Un, p) — F.

@ The coercivity constant 3(u) of the tangent operator.

@ The estimator Ap(u) (solution of an algebraic equation) can be
computed whenever £(p) is small enough.




Application: Thermal analysis of peristyles

Thermal comfort optimisation of peristyles

e Purpose: To optimise the geometrical design peristyles to reach the best
thermal comfort in hot climates.

e Model: Steady Smagorinsky + Heat conservation equations, forced
convection.

e The equations are transformed by a change of variables from a reference
domain. This makes explicit the dependence of the operator with respect
to the parameters.
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Figure: Left: Geometrical setting for targeted cloister. Right: Reference domain.



Application: Thermal analysis of peristyles

Construction of Reduced Space history

e Error estimator in terms of number of basis functions.

Figure: Left: Error estimator for velocity. Right: Error estimator for temperature.

e The eddy viscosity is approximated by an Empirical Interpolation
technique.



Application: Thermal analysis of peristyles

Trust vs reduced solution.

e Re = 3.100. Tiop = 24°C, Thottom = 22°C. Adiabatic conditions on
solid walls.

Figure: Comparison of reduced-trust velocity (left) and temperature (right).



Application: Thermal analysis of peristyles

Numerical performance of Reduced Basis method

e Errors and computational speeds-up for three cases not included in the
training set Diain.

o Case 1: w=2.891, 0 =2.734
o Case 2: w=12.649, 0 =2.65
o Case 3: w=12.469, 0 =2.923

Data Case 1 Case 2 Case 3
|Un— Un|l7 | 5.93-107® 3.73-107® 7.28-10°°
Ay 1.21-107* 1.07-107* 1.89-10~*
0 — Onll2 | 1.56-107> 5.49-107> 4.62-107°
Do n 3.61-107° 1.49-107* 1.11-107*
speedup 133 152 141




Application: Thermal analysis of peristyles

Thermal comfort optimization

e Purpose: To optimize the peristilyum geometry to get a temperature at
bottom part as close as possible to the comfort temperature (T, = 24°C):

e Problem: Set D = [2,4] x [2.5, 3] (lengths in meters). Obtain

T(w,o0)— T,
argmin J(w, o), with J(w,0) = 17 ) C”LZ(QBotmm).

(w,0)ED V |QBottom |

Figure: Thermal comfort functional J.

e The minimum is at w = wWpmax, 0 = O min (Maximum width and minimum
height of corridor).



Conclusions
Concluding remarks and future work

@ The regularity of Smagorinsky operator allows to construct a
posteriori-error estimators for RB models.

@ Need of increasing the efficiency of estimators. In progress an
estimator based upon the Kolmogorov theory of equilibrium
turbulence. :

Figure: Comparison between error and estimate based upon Kolmogorov
turbulence theory.

@ Mixed data-driven/physics-based turbulence models in view. Modelling of
effect of sub-grid scales by data-driven ROM techniques.
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