
Interactions between Neural ODE,
Bayesian Inverse Problems and Optimal
Transportation, applied to the Calderón

problem

Pablo Angulo

Valladolid, NBMDS, November 11th, 2021

Outline of the talk

Neural ODEs
Continuous Normalizing Flows
Differentiable Programming, Scientific Machine Learning, julia
The bayesian approach to Inverse Problems
Informative priors for the Calderón Problem
Open questions and open problems

Outline of the talk

Neural ODEs
Continuous Normalizing Flows
Differentiable Programming, Scientific Machine Learning, julia
The bayesian approach to Inverse Problems
Informative priors for the Calderón Problem
Open questions and open problems

Outline of the talk

Neural ODEs
Continuous Normalizing Flows
Differentiable Programming, Scientific Machine Learning, julia
The bayesian approach to Inverse Problems
Informative priors for the Calderón Problem
Open questions and open problems

Outline of the talk

Neural ODEs
Continuous Normalizing Flows
Differentiable Programming, Scientific Machine Learning, julia
The bayesian approach to Inverse Problems
Informative priors for the Calderón Problem
Open questions and open problems

Outline of the talk

Neural ODEs
Continuous Normalizing Flows
Differentiable Programming, Scientific Machine Learning, julia
The bayesian approach to Inverse Problems
Informative priors for the Calderón Problem
Open questions and open problems

Outline of the talk

Neural ODEs
Continuous Normalizing Flows
Differentiable Programming, Scientific Machine Learning, julia
The bayesian approach to Inverse Problems
Informative priors for the Calderón Problem
Open questions and open problems

ODENets and Neural ODEs

Residual Networks (ResNets), and also recurrent neural network
decoders, normalizing flows and other architectures follow this
scheme:

xt+1 = xt + f (xt , θt)

Neural ODE (also ODEnet) Replace those schemes by the solution
of dynamical systems:

ẋ = f (x, t , θ)

Weinan 17, Haber Ruthotto 17-18, Chen et al 18-19

Neural ODE are also a system of ODEs defined by a neural network:

ẋ = NN(x, t , θ)

Rackauckas et al 20 Universal Differential Equations for Scientific Machine Learning

ODENets and Neural ODEs

Residual Networks (ResNets), and also recurrent neural network
decoders, normalizing flows and other architectures follow this
scheme:

xt+1 = xt + f (xt , θt)

Neural ODE (also ODEnet) Replace those schemes by the solution
of dynamical systems:

ẋ = f (x, t , θ)

Weinan 17, Haber Ruthotto 17-18, Chen et al 18-19

Neural ODE are also a system of ODEs defined by a neural network:

ẋ = NN(x, t , θ)

Rackauckas et al 20 Universal Differential Equations for Scientific Machine Learning

ODENets and Neural ODEs

Residual Networks (ResNets), and also recurrent neural network
decoders, normalizing flows and other architectures follow this
scheme:

xt+1 = xt + f (xt , θt)

Neural ODE (also ODEnet) Replace those schemes by the solution
of dynamical systems:

ẋ = f (x, t , θ)

Weinan 17, Haber Ruthotto 17-18, Chen et al 18-19

Neural ODE are also a system of ODEs defined by a neural network:

ẋ = NN(x, t , θ)

Rackauckas et al 20 Universal Differential Equations for Scientific Machine Learning

Software

torchdiffeq for python
FluxDiffEq for julia

Embedded in a machine learning toolkit (torch / Flux)⇒ runs
in parallel, CPU or GPU
Automatic Differentiation
Fast implementations of common operations and optimization
algorithms
⇒ Easy parameter estimation

Julia

julia is pretty awesome for numerical computation
open source
general purpose
dynamic
compiled
macros as in LISP (@. sin(xs)/2)
source-to-source Automatic Differentiation
fast!

Composition
Two different ideas:

A neural network that defines an ODE:
Make a neural net with a NeuralODE layer
dudt = FastChain(

(x, p) -> x.ˆ3, # Guess a cubic function
Multilayer perceptron for the part we don’t know
FastDense(2, 50, tanh), FastDense(50, 2))

prob_neuralode = NeuralODE(dudt, tspan, Tsit5(), u0, saveat = ts)

Use an ODE layer as part of a neural network structure.
MNIST: 784 pixels to 10 digits
down = Chain(Flux.flatten, Dense(784, 20, tanh)) |> gpu

nn = Chain(Dense(20, 10, tanh),
Dense(10, 10, tanh),
Dense(10, 20, tanh)) |> gpu

nn_ode = NeuralODE(nn, (0.0, 1.0), Tsit5(),
save_everystep = false,
reltol = 1e-3) |> gpu

fc = Chain(Dense(20, 10)) |> gpu

Build our overall model topology
model = Chain(down,

nn_ode,
DiffEqArray_to_Array,
fc) |> gpu;

Julia ecosystem for Scientific Machine Learning
There is actually a healthy community centered on building and using
julia tools for

Universal Differential Equations

Models composed of
ODEs

Delay Differential Equations

Stochastic ODEs

Partial Differential Equations

Differential Algebraic Equations

Events (such as “ball bounces in floor”)

Neural Networks

where the free parameters minimize some regularized loss wrt data.

The idea is to put all our knowledge into the model, and “fill the gaps”
with free parameters and neural networks

ẋ = αx + U1(x , y)
ẏ = −δy + U2(x , y)

Rackauckas et al 20 Universal Differential Equations for Scientific Machine Learning

Julia ecosystem for Scientific Machine Learning
There is actually a healthy community centered on building and using
julia tools for

Universal Differential Equations

Models composed of
ODEs

Delay Differential Equations

Stochastic ODEs

Partial Differential Equations

Differential Algebraic Equations

Events (such as “ball bounces in floor”)

Neural Networks

where the free parameters minimize some regularized loss wrt data.

The idea is to put all our knowledge into the model, and “fill the gaps”
with free parameters and neural networks

ẋ = αx + U1(x , y)
ẏ = −δy + U2(x , y)

Rackauckas et al 20 Universal Differential Equations for Scientific Machine Learning

Parameter estimation of an ODE in julia

using DifferentialEquations, DiffEqFlux

function lotka_volterra(u, p, t)
[α, β, δ, γ] = p
[x, y] = u
[α*x - β*x*y, - δ*y + γ*x*y]

end

prob = ODEProblem(lotka_volterra, u0, tspan, p)
sol = solve(prob, Tsit5())

function loss(p)
sol = solve(prob, Tsit5(), p=p, saveat = tsteps)
sum(abs2, sol - data)

end

result_ode = DiffEqFlux.sciml_train(loss, p)

Finding interaction terms of an ODE in julia

U = FastChain(
FastDense(2,5,rbf), FastDense(5,5, rbf),
FastDense(5,5, rbf), FastDense(5,2)

)
Get the initial parameters
p = initial_params(U)

Define the hybrid model
function lotka_volterra_ude(du, u, p, t)

Up = U(u, p) # Network prediction
[α*u[1] + Up[1], - β*u[2] + Up[2]]

end

Define the problem
prob_nn = ODEProblem(lotka_volterra_ude, u0, tspan, p)

(aside) modelica

The idea os SciML tickles me, because many people in the Naval
Industry in Spain is very excited with modeling tools like the language
modelica:

The idea is precisely to define models for every subsystem of a ship.
And each such system will need some parameter estimation, or
model inference.

(aside) Digital twins in the Naval Industry

And the whole industry is even more crazy about digital twins.

mfame.guru

Digital Twin (a personal definition)

A folder full of models for different subsystems together with
a presentation layer that transmits coherence, unity, purpose...
sensors to collect data from real operations
the possibility of updating the model parameters with that data

(aside) Digital twins in the Naval Industry

And the whole industry is even more crazy about digital twins.

mfame.guru

Digital Twin (a personal definition)

A folder full of models for different subsystems together with
a presentation layer that transmits coherence, unity, purpose...
sensors to collect data from real operations
the possibility of updating the model parameters with that data

Regularization

A well-posed problem can be solved by minimizing the empirical
error:

min
θ

∑
loss

(
f (xj , θ), yj

)
In the presence of nonuniqueness or lack of stability, some amount of
regularization is required:

min
θ

∑
loss

(
f (xj , θ), yj

)
+ R(θ)

If the objective is to recover some function, Gaussian processes are
common: R(θ) is the norm of fθ in the Reproducing Kernel Hilbert
Space (RKHS) associated to the Gaussian process.

Regularization

A well-posed problem can be solved by minimizing the empirical
error:

min
θ

∑
loss

(
f (xj , θ), yj

)
In the presence of nonuniqueness or lack of stability, some amount of
regularization is required:

min
θ

∑
loss

(
f (xj , θ), yj

)
+ R(θ)

If the objective is to recover some function, Gaussian processes are
common: R(θ) is the norm of fθ in the Reproducing Kernel Hilbert
Space (RKHS) associated to the Gaussian process.

Bayesian Inverse Problems

Regularization admits a “bayesian interpretation”.

minθ
∑

j

loss
(
f (xj , θ), yj

)
︸ ︷︷ ︸

+R(θ)︸ ︷︷ ︸
data likelihood prior

The regularized loss to-be-minimized is the formal? negative
logarithm of the posterior density.

min
θ

∑
loss

(
f (xj , θ), yj

)
+R(θ) = max

θ
exp

{
−
∑

loss
(
f (xj , θ), yj

)
− R(θ)

}
In other words, the Maximum a posteriori (MAP) estimator for the
density:

MAP = argmaxθ exp
{
−
∑

loss
(
f (xj , θ), yj

)
− R(θ)

}

Caveat minimizanti

But a function is not the same as a probability measure. A function is
all you need to pose a minimization problem, but it is not a probability
measure.
In Bayesian Statistics, any unknown quantity is assigned a
probability measure. This is the rigorous way of measuring
uncertainty...
... and this is the only “axiom” of Bayesian Statistics.
Priors are not plugged into the bayesian paradigm: they arise
naturally as a consequence of Bayes Theorem.

Stuart 2010. Inverse problems: A Bayesian perspective

Caveat minimizanti

But a function is not the same as a probability measure. A function is
all you need to pose a minimization problem, but it is not a probability
measure.
In Bayesian Statistics, any unknown quantity is assigned a
probability measure. This is the rigorous way of measuring
uncertainty...
... and this is the only “axiom” of Bayesian Statistics.
Priors are not plugged into the bayesian paradigm: they arise
naturally as a consequence of Bayes Theorem.

Stuart 2010. Inverse problems: A Bayesian perspective

Bayesian estimation of ODE parameters

And the julia SciML community has sharp tools for bayesian
estimation of parameters of ODEs using NUTS and other MCMC
variants:

Dandekar et al 21 Bayesian Neural Ordinary Differential Equations

“Bayesian Statistics using Julia and Turing”

(back to NeuralODE) Applications

Drop-in replacements for ResNets
Generative models
Uncertainty quantification
Time series with non uniformly spaced data
Continuous Normalizing Flows for building Invertible Neural
Networks
Latent space interpolation
Feature transfer

After the hype died out, it turns out that most of the things you can do
with NeuralODE can be done with an alternative method.
But it remains an interesting tool, suitable for machine learning and
amenable to mathematical analysis.

(back to NeuralODE) Applications

Drop-in replacements for ResNets
Generative models
Uncertainty quantification
Time series with non uniformly spaced data
Continuous Normalizing Flows for building Invertible Neural
Networks
Latent space interpolation
Feature transfer

After the hype died out, it turns out that most of the things you can do
with NeuralODE can be done with an alternative method.
But it remains an interesting tool, suitable for machine learning and
amenable to mathematical analysis.

Discrete Normalizing Flows

Goal: An invertible transformation carries a sample from an unknown
distribution to a sample from a well known distribution. For instance,
z0 is normally distributed, zn is the data.

z1 = f1(z0), z2 = f2(z1), ...

Example: planar normalizing flow

zt+1 = zt + uh(wT z(t) + b)

Problems were found, and have been adressed:
need to compute jacobians
use transformations that can be parameterized, but are always
invertible
stability issues

Discrete Normalizing Flows

Goal: An invertible transformation carries a sample from an unknown
distribution to a sample from a well known distribution. For instance,
z0 is normally distributed, zn is the data.

z1 = f1(z0), z2 = f2(z1), ...

Example: planar normalizing flow

zt+1 = zt + uh(wT z(t) + b)

Problems were found, and have been adressed:
need to compute jacobians
use transformations that can be parameterized, but are always
invertible
stability issues

Continuous Normalizing Flow

For a continuous-time transformation and an initial fixed density p0,
flow the z-space:

ż = f (z(t), t)

Then
∂ log(p(z(·, t)))

∂t
= div

(
∂f
∂z

)
The push forward by the time-1 flow p1λ = Flow1

0 #(p0λ) of an
absolutely continuous probability measure p0λ (λ is the Lebesgue
measure) is given by

p1 = |Jac(Flow1
0)|p0 = exp

(∫ 1

0
div f (z, t)

)
p0

Wasserstein distance of metrics

Wasserstein distance between two measures, à la Monge

W2(µ, ν)2 = min
T st T #µ=ν

∫
X
‖x − T (x)‖2dµ(x)

Kantorovich formulation

W2(µ, ν)2 = min
σ∈Γ(µ,ν)

∫
X×X
‖x − y‖2dσ(x , y)

where Γ(µ, ν) = {σ ∈M(X × X) : (πX×) #σ = µ, (π ×X) #σ = ν)

Intuition: Earth’s mover distance

Benamou-Brenier formulation

Benamou-Brenier formulation of optimal transport

Equivalent formulation of optimal transport for two absolutely
continuous measures with densities p0 and pT .

W2(p0,p1)2 = min
f∈C(p0,p1)

∫ (∫ 1

0
‖f (z(t), t)‖2 dt

)
p0(z(0))dz0

C(p0,p1) =
{

Flow(f)1
0#p0 = p1

}
Solve this extended ode in just one pass, for a representative sample
of initial points:

ż = f (z, t)
j̇ = div(f)(z, t)
ṙ = ‖f (z, t)‖2

and compute both
(
Flow1

0 (f)#p0
)

(z0) = exp(jz0 (1))p0(z0) and∫
rz0 (1)dt p0(z0) dz0

Continuous Normalizing Flow as Optimal
Transport

Minimize the loss regularized with a Benamou-Brenier cost to get a
Wasserstein metric regularization term

min
f

∑
datafit (p1,data) + ΛW2(p0,p1)2

For instance datafit (p1λ,ptrue) could be a Kullback-Leibler divergence

datafit = KL(p1λ,ptrue) ≈ const − 1
N

∑
log(p1(xi))

Finlay et al 20 proposed to add also a “kinetic energy” regularization:

minf
∑

datafit (p1,data) + Λ1W2(p0,p1)2

+Λ2
∫ (∫ 1

0 ‖∇f (z(t), t)‖2 dt
)

p0(z(0))dz0

Esteve et al 20 proposed ‖[bt ,wt]‖Hk as regularization, and studied
the sensitivity to the final time.
Finlay et al 20, How to train your neural ODE the world of Jacobian and kinetic regularization

Esteve Geshkovski Pighin Zuazua 20 Large-time asymptotics in deep learning

Robustness

Neural ODE seems, empirically, to be more robust than CNNs,
specially withW1 regularization.
Yan et al 20 On Robustness of Neural Ordinary Differential Equations

Some variants have been proved to be stable
f is a gradient flow
f is a Hamiltonian flow with dissipation

q̇ = p
ṗ = −αq − ∂qε(q, x0, θ)

Massaroli et al 20 Stable Neural Flows

Continuous Normalizing Flows for Density
Estimation

Density estimation
Given sample {xi}.
Goal: estimate the density

Flow from a reference distribution p0 (usually z ∼ N (0,1)) to the true
x distribution p1.
Loss is −

∑
log(p1(xi)), which admits interpretations both as the

density of the sample, and the Kullback-Leibler divergence of the
empirical distribution and p1.
Generative Model Sample z at random and flow them⇒ get

random x
Latent space interpolation Given x1, x2, usually αx1 + (1− α)x2 is

not meaningful, but αz1 + (1− α)z2 often is.

INN for Inverse Problems

Invertible Neural Networks have been applied to inverse problems in
a systematic way.
CNFs could be used in a totally equivalent way:

Well-posed forward problem x → y , can run it on arbitrary inputs
x ∈ Rn. Get y ∈ Rm, with n > m.
Goal: the inverse map y → x

1 Draw xi from a prior distribution.
2 Run the forward process to produce the dataset {(xi , yi)}.
3 Enlarge y with dummy variables zi ∈ Rn−m, random samples of a

reference distribution, usually z ∼ N (0,1).
4 Learn

Flow(x) = (y , z)

Loss is a supervised loss (
∑

i (yi − Fy (xi))2) plus a discrepancy
between p1 and the product of the empirical y distribution and a
gaussian distribution for z.

INN for Inverse Problems

Goal: the inverse map y → x

Flow(x) = (y , z)

The map x → y is well posed, and now (z, y)→ x is well posed too.
Feature transfer Given y1, x2, compute (y2, z2) = Flow(x2), and

output Flow−1(y1, z2)

Uncertainty Quantification Given y , sample zi and get a sample
{Flow−1(zi , y)} for x .

Ardizzone et al 19 Guided Image Generation with Conditional Invertible Neural Networks

Conditional INN

Alternative: conditional
invertible neural networks

This has not yet been carried to Neural ODE, but it could be done.
Loss function is minus log of the posterior probability of the sample.

Generation of alternatives

Feature transfer

Ardizzone et al 19 Guided Image Generation with Conditional Invertible Neural Networks

Calderón problem

In an open set Ω of R2 or R3, given conductivities γ, the voltages
satisfy the equation:

−∇ · (γ∇u) = 0

And a well posed forward problem is to predict the currents at ∂Ω
given the voltages at ∂Ω.
The inverse problem is more interesting: given measurements from
experiments where the voltage is set on the boundary and the
currents are measured, recover the conductivities in Ω.

Definition (Dirichlet to Neumann map)

Λ : H
1
2 (∂Ω)→ H−

1
2 (∂Ω) defined by

Λ(f) =
∂u
∂n
|Ω

where u is the unique solution to the boundary value problem{
−∇ · (γ∇u) = 0 Ω
u = f ∂Ω

Applications

Initial motivation: finding underground petrol deposits through
electrical imaging (and seismic imaging poses a similar problem).

Also

Cancer detection Cracks in structures

Kim et al 07 Karhunen et al 10
Water in concrete structures Stroke detection

Hallaji et al 15 Agnelli et al 21

Numerical methods based on CGO solutions

81 Calderón rediscovered the problem.
87 n = 3 Sylvester-Uhlmann: ρ ∈ C2 Introduced CGO solutions
u = eϕ(x)+iψ(1 + r)

96 Nachman: recover smooth conductivities
00 Siltanen, Mueller and Isaacson: Numerical CGOs
06 Astala and Päivärinta: Beltrami-type solutions recover a
bounded potential
10 Astala, Mueller, Päivärinta and Siltanen: First numerical
solution method
11 Astala, Mueller, Päivärinta, Perämäki and Siltanen: New EIT
reconstruction method
14 Astala, Päivärinta, Reyes and Siltanen: Numerical
experiments with discontinuous conductivities

Ill-posed: ghosts
But the Calderón problem is notoriously ill-posed: quite different
conductivities give rise to similar Dirichlet to Neumann data.
Low-pass filters mitigate, but do not eliminate this problem.
In reality, we don’t know the full Λ, but we can only set the voltages
and measure the currents at a few electrodes.
The result are ghosts: nontrivial conductivities completely
undetectable by electrical tomography.
And it’s also computationally challenging.

Chesnel et al 14

Ill-posed: ghosts
But the Calderón problem is notoriously ill-posed: quite different
conductivities give rise to similar Dirichlet to Neumann data.
Low-pass filters mitigate, but do not eliminate this problem.
In reality, we don’t know the full Λ, but we can only set the voltages
and measure the currents at a few electrodes.
The result are ghosts: nontrivial conductivities completely
undetectable by electrical tomography.
And it’s also computationally challenging.

Chesnel et al 14

Priors for Inverse Problems

Gaussian processes are the favorite priors for linear inverse
problems.
Stuart 2010. Inverse problems: A Bayesian perspective

Usually, only the maximum a posteriori (MAP) estimator is kept, so
the problem is just minimization with a regularization term.
For some authors, the “bayesian approach” to inverse problems is
just minimization of a regularized loss.
Some authors also prove frequentist properties of this MAP estimator.
Monard Nickl Paternain 2017 Efficient Nonparametric Bayesian Inference For X-Ray Transforms

Monard Nickl Paternain 2020 Statistical guarantees for Bayesian uncertainty quantification in

non-linear inverse problems with Gaussian process priors

Abraham Nickl 20 On statistical Calderón problems

Priors for Inverse Problems

Gaussian processes are the favorite priors for linear inverse
problems.
Stuart 2010. Inverse problems: A Bayesian perspective

Usually, only the maximum a posteriori (MAP) estimator is kept, so
the problem is just minimization with a regularization term.
For some authors, the “bayesian approach” to inverse problems is
just minimization of a regularized loss.
Some authors also prove frequentist properties of this MAP estimator.
Monard Nickl Paternain 2017 Efficient Nonparametric Bayesian Inference For X-Ray Transforms

Monard Nickl Paternain 2020 Statistical guarantees for Bayesian uncertainty quantification in

non-linear inverse problems with Gaussian process priors

Abraham Nickl 20 On statistical Calderón problems

Uninformative Gaussian priors

In abundance of data, most practitioners prefer a noninformative
prior, agnostic about the result. A Gaussian process prior is best
suited for a linear problem, which encodes basically only information
about the regularity of the solutions.
The prior is deduced from the noise model, propagated into the prior
by the regularization of the operator.
For the Calderón problem, a natural model is gaussian error in
operator space W:

Y = Λh + εW

Caro Meroño 19 The observational limit of wave packets with noisy measurements

Abraham Nickl 20 On statistical Calderón problems

For a gaussian error in Λ, Abraham Nickl propose a Gaussian prior
which a.s. gives values in Hα, α > 2 + d/2. The Gaussian process is
composed with a link function, since the problem is non linear.
Roininen 14 Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical

impedance tomography

Uninformative Gaussian priors

In abundance of data, most practitioners prefer a noninformative
prior, agnostic about the result. A Gaussian process prior is best
suited for a linear problem, which encodes basically only information
about the regularity of the solutions.
The prior is deduced from the noise model, propagated into the prior
by the regularization of the operator.
For the Calderón problem, a natural model is gaussian error in
operator space W:

Y = Λh + εW

Caro Meroño 19 The observational limit of wave packets with noisy measurements

Abraham Nickl 20 On statistical Calderón problems

For a gaussian error in Λ, Abraham Nickl propose a Gaussian prior
which a.s. gives values in Hα, α > 2 + d/2. The Gaussian process is
composed with a link function, since the problem is non linear.
Roininen 14 Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical

impedance tomography

Informative priors for the Calderón problem

But with such an ill-posed, high-stakes problem as Calderón problem
with finitely many sensors, we cannot afford to ignore widely accepted
common knowledge data:

Important prior information is available

The mathematical models proposed for Electric Impedance
Tomography are the same than those proposed for geophysical
imaging.

Furthermore, with so much instability, it is absolutely necessary to
quantify the uncertainty.
The Calderón problem needs a proper Bayesian formulation, with a
proper informative prior.

Informative priors for the Calderón problem

But with such an ill-posed, high-stakes problem as Calderón problem
with finitely many sensors, we cannot afford to ignore widely accepted
common knowledge data:

Important prior information is available

The mathematical models proposed for Electric Impedance
Tomography are the same than those proposed for geophysical
imaging.

Furthermore, with so much instability, it is absolutely necessary to
quantify the uncertainty.
The Calderón problem needs a proper Bayesian formulation, with a
proper informative prior.

Gaussian Balls around a function?

We would like to consider a “reference” conductivity h0, so that
“closer” conductivities are more probable than further away ones.
First idea: a “gaussian distribution” in a suitable Hk or RKHS:

min
θ

∑
loss

(
f (xj , θ), yj

)
+ R(θ) + ‖hθ − hθ0‖2

If d(x1, x2) > 2ε, a standard “y-value” norm gives the same distance
between IBε(x1) and IBε(x2), regardless of the distance between x1 and
x2.

Gaussian Balls around a function?

We would like to consider a “reference” conductivity h0, so that
“closer” conductivities are more probable than further away ones.
First idea: a “gaussian distribution” in a suitable Hk or RKHS:

min
θ

∑
loss

(
f (xj , θ), yj

)
+ R(θ) + ‖hθ − hθ0‖2

If d(x1, x2) > 2ε, a standard “y-value” norm gives the same distance
between IBε(x1) and IBε(x2), regardless of the distance between x1 and
x2.

Wasserstein distance?

The Wasserstein distance makes sense in medical imaging, because
the chest naturally flows, transporting the fluids and tissues. It makes
even more sense for geophysical flows.
But Wasserstein distance alone has serious flaws, because theW2
distance between two densities with different integrals is infinite.
However, it can be useful as a building block with which to compose a
more suitable prior.

Inspiration: edit distance of words

Distance(word1, word2) = number of editions required to go from
word1 to word2

There are several variants: The Damerau-Levenshtein distance, for
instance, allows deletion, insertion, substitution and transposition of
two adjacent characters.

Wasserstein distance?

The Wasserstein distance makes sense in medical imaging, because
the chest naturally flows, transporting the fluids and tissues. It makes
even more sense for geophysical flows.
But Wasserstein distance alone has serious flaws, because theW2
distance between two densities with different integrals is infinite.
However, it can be useful as a building block with which to compose a
more suitable prior.

Inspiration: edit distance of words

Distance(word1, word2) = number of editions required to go from
word1 to word2

There are several variants: The Damerau-Levenshtein distance, for
instance, allows deletion, insertion, substitution and transposition of
two adjacent characters.

Edit distance for the Calderón problem

minθ loss
(
D2N(hΘ),data

)
+R(Θ.A)
+W2(FlowΘ.B#(hΘ.A

0),hΘ.A
0)2

+‖h̃Θ.C‖2
RKHS

Parameters are split into three parts (Θ.A,Θ.B,Θ.C) which play
different roles in the conductivity proposal:

hΘ = Flow(hΘ.A
0 , f Θ.B) + h̃Θ.C

hΘ.A
0 The reference conductivity is parameterized by

Θ.A ∈ Rn.
f Θ.B The flow is parameterized by a neural network.
h̃Θ.C An additive y -space perturbation (FEM, spectral basis,

Gaussian process...).

Sample from Wasserstein gaussians?

There are several possible alternatives to quantify the uncertainty in
the reconstruction (ABC, continuous normalizing flow, for instance),
but we need to be able to sample from the prior.
How to sample from these “Wasserstein balls”?

h→ exp
(
−W2(h,h0)2)

First, we must realize that a “density function” from the function space
into R is not a probability measure.
There is no Lebesgue measure in infinite dimensional function spaces
There are many ways of sampling compatible with this “Wasserstein
density”, not all equivalent.

Sample from Wasserstein gaussians?

There are several possible alternatives to quantify the uncertainty in
the reconstruction (ABC, continuous normalizing flow, for instance),
but we need to be able to sample from the prior.
How to sample from these “Wasserstein balls”?

h→ exp
(
−W2(h,h0)2)

First, we must realize that a “density function” from the function space
into R is not a probability measure.
There is no Lebesgue measure in infinite dimensional function spaces
There are many ways of sampling compatible with this “Wasserstein
density”, not all equivalent.

Sample from Wasserstein gaussians?

There are several possible alternatives to quantify the uncertainty in
the reconstruction (ABC, continuous normalizing flow, for instance),
but we need to be able to sample from the prior.
How to sample from these “Wasserstein balls”?

h→ exp
(
−W2(h,h0)2)

First, we must realize that a “density function” from the function space
into R is not a probability measure.
There is no Lebesgue measure in infinite dimensional function spaces
There are many ways of sampling compatible with this “Wasserstein
density”, not all equivalent.

Sampling multivariate normals

Sampling a multivariate normal
1 Identify the distribution for ‖x‖, when x ∼ N(0, I).
2 Sample a norm for this distribution n ∼ χ2(d), where d is the

dimension.
3 Choose any method to sample uniformly a point in the sphere

v ∈ Sd .
4 Output n · v

Can do something analogous to this for Wasserstein gaussians?
Problem: this “change to radial coordinates” also requires a measure!
Which is the “number of degrees of freedom”?

Sampling multivariate normals

Sampling a multivariate normal
1 Identify the distribution for ‖x‖, when x ∼ N(0, I).
2 Sample a norm for this distribution n ∼ χ2(d), where d is the

dimension.
3 Choose any method to sample uniformly a point in the sphere

v ∈ Sd .
4 Output n · v

Can do something analogous to this for Wasserstein gaussians?
Problem: this “change to radial coordinates” also requires a measure!
Which is the “number of degrees of freedom”?

Sampling Wasserstein gaussians

A proposal for a Wasserstein gaussian of radius r in one dimension:
1 Fix an integer N > 0.
2 Extract a positive “length” ` from r times a χ2 with 1 degree of

freedom.
3 Split `2 among the N bins (1

N

∑
b2

j = `2), and randomly choose a
sign sj for each j .

4 Order the resulting numbers sjbj in increasing order.
5 Assign those numbers to the quantiles qj = Q(1

2N + j
N) for

j = 1, . . . ,N.
6 Move each such quantile by the corresponding amount

q′j = qj + sjbj .
7 Interpolate linearly between quantiles.

⇒ The total transport cost is
√

1
N

∑
j b2

j = `. But some choices were
made :-/
Can we do a similar process in higher dimension, in the lines of
yesterday talk by Marc Hallin?
Figalli 18 On the Continuity of Center-Outward Distribution and Quantile Functions

Sampling Wasserstein gaussians

A proposal for a Wasserstein gaussian of radius r in one dimension:
1 Fix an integer N > 0.
2 Extract a positive “length” ` from r times a χ2 with 1 degree of

freedom.
3 Split `2 among the N bins (1

N

∑
b2

j = `2), and randomly choose a
sign sj for each j .

4 Order the resulting numbers sjbj in increasing order.
5 Assign those numbers to the quantiles qj = Q(1

2N + j
N) for

j = 1, . . . ,N.
6 Move each such quantile by the corresponding amount

q′j = qj + sjbj .
7 Interpolate linearly between quantiles.

⇒ The total transport cost is
√

1
N

∑
j b2

j = `. But some choices were
made :-/
Can we do a similar process in higher dimension, in the lines of
yesterday talk by Marc Hallin?
Figalli 18 On the Continuity of Center-Outward Distribution and Quantile Functions

Sampling Wasserstein gaussians in 2D

A different proposal for 2D or higher:
1 Fix a kernel and a perturbation magnitude R.
2 Sample f = (f1, f2) ∼ RKHS2.
3 Flow µ by f , get ν.
4 Compute the optimal transport from µ to ν, and the optimal

transport map T .
5 Extract a positive “length” ` from R times a χ2 with 2 degrees of

freedom.
6 Instead of following T all the way from µ to ν, follow it just a

length `.
Idea behind the scheme:

The tangent to Wasserstein space are the transport maps.
The perturbation will cover a neighborhood of µ in a “fair” way.
So choose a unit tangent vector and follow it ` ∼ χ2 to get the
right statistics.

Villani Topics in Optimal Transport

... and that’s about as far as I got

I promised to finish with open questions:
What is a best probability model for EIT?
How to sample from Wasserstein Gaussians?
Should Wasserstein distance play a role in time dependent
(dynamic) EIT?

Questions?

Questions?

