A first step towards numerical approximation of
controllability problems via Deep- Learning-based
methods

Francisco Periago

Universidad Politécnica de Cartagena. Spain
Supported by Fundacién Séneca-Agencia de Ciencia y Tecnologia de la
Regién de Murcia. Mobility program Jiménez de la Espada.

Ongoing work in collaboration with Carlos J. Garcia Cervera
(University of California, Santa Barbara), and Mathieu Kessler
(Universidad Politécnica de Cartagena)

Workshop on New Bridges between Mathematics and Data Science
November 8" — 11, Valladolid, Spain

Goals, outline and references

Goals

Goals, outline and references

Goals
m Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs

Goals, outline and references

Goals
m Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
m Provide error estimates for the so-called generalization error

Goals, outline and references

Goals
m Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
m Provide error estimates for the so-called generalization error
Outline

Goals, outline and references

Goals
m Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
m Provide error estimates for the so-called generalization error
Outline
m Toy model: boundary controllability of the linear wave equation

Goals, outline and references

Goals
m Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
m Provide error estimates for the so-called generalization error
Outline
m Toy model: boundary controllability of the linear wave equation
m We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model

Goals, outline and references

Goals
m Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
m Provide error estimates for the so-called generalization error
Outline
m Toy model: boundary controllability of the linear wave equation
m We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
m Analysis of error estimates for generalization error

Goals, outline and references

Goals

m Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs

m Provide error estimates for the so-called generalization error

Outline

m Toy model: boundary controllability of the linear wave equation

m We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model

m Analysis of error estimates for generalization error

m Numerical implementation via DeepXDE Python library

Goals, outline and references

Goals
m Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
m Provide error estimates for the so-called generalization error
Outline
m Toy model: boundary controllability of the linear wave equation
m We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
m Analysis of error estimates for generalization error
m Numerical implementation via DeepXDE Python library
m Numerical simulation results

Goals, outline and references

Goals
m Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
m Provide error estimates for the so-called generalization error
Outline
m Toy model: boundary controllability of the linear wave equation
m We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
Analysis of error estimates for generalization error
Numerical implementation via DeepXDE Python library
Numerical simulation results
Extension to other PDEs, mainly where high-dimensionality plays a role

Goals, outline and references

Goals
m Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
m Provide error estimates for the so-called generalization error
Outline
m Toy model: boundary controllability of the linear wave equation
m We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
m Analysis of error estimates for generalization error
m Numerical implementation via DeepXDE Python library
m Numerical simulation results
m Extension to other PDEs, mainly where high-dimensionality plays a role
References

@ Raisi, M., Perdikaris, P. and Karniadakis, G: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput.
Physics 378, 686-707, 2019.

@ Lu, L., Meng, X., Mao, Z. and Karniadakis, G.: DeepXDE: A Deep
Learning Library for Solving Differential Equations, SIAM Review, 63 (1),
208-228, 2021.

A toy model: controllability of the linear wave equation

The exact controllability problem: given initial data (y°(x), y*(x)) and a
positive time T > 0 find a boundary control u(t) such that the solution y(x, t)
of the system

Ver = Y, in (0,1) x (0, T)
.V(X7 0) :yo(X)7 in (07 1) (1)
ye(x,0) = y*(x) in (0,1)

y(0,t) =0, y(1,t)=u(t) on(0,T)

A toy model: controllability of the linear wave equation

The exact controllability problem: given initial data (y°(x), y*(x)) and a
positive time T > 0 find a boundary control u(t) such that the solution y(x, t)
of the system

Ver = Y, in (0,1) x (0, T)
.V(X7 0) :yo(X)7 in (07 1) (1)
ye(x,0) = y*(x) in (0,1)

y(0,t) =0, y(1,t)=u(t) on(0,T)

satisfies
y(x, T)=y:(x, T)=0 in (0,1). (2)

A toy model: controllability of the linear wave equation

The exact controllability problem: given initial data (y°(x), y*(x)) and a
positive time T > 0 find a boundary control u(t) such that the solution y(x, t)
of the system

Ver = Y, in (0,1) x (0, T)
.V(X7 0) :yo(X)7 in (07 1) (1)
ye(x,0) = y*(x) in (0,1)

y(0,t) =0, y(1,t)=u(t) on(0,T)
satisfies
y(Xa T) = .yl'(X7 T) =0 in (07 1) (2)
For T = 2/c this problem has the explicit solution
%yo(lfct)Jr%fll_dyl(s)ds 0<t<1/c

o) — 3)
—3 (et =)+ % [o, () ds 1/e<t<2/c

Numerical approximation of the control via PINNs

Numerical approximation of the control via PINNs

Main steps of the PINNs algorithm

Numerical approximation of the control via PINNs

Main steps of the PINNs algorithm

design an artificial neural network y (x, t; 0) as a surrogate of the true
solution y(x, t)

Numerical approximation of the control via PINNs

Main steps of the PINNs algorithm

design an artificial neural network y (x, t; 0) as a surrogate of the true
solution y(x, t)

Choose a training dataset in the space-time domain (0,1) x (0, T)

Numerical approximation of the control via PINNs

Main steps of the PINNs algorithm

design an artificial neural network y (x, t; 0) as a surrogate of the true
solution y(x, t)

Choose a training dataset in the space-time domain (0,1) x (0, T)

Consider a loss function: a weighted summation of the L? norm of
residuals for the equation, boundary, initial and final conditions

Numerical approximation of the control via PINNs

Main steps of the PINNs algorithm

design an artificial neural network y (x, t; 0) as a surrogate of the true
solution y(x, t)

Choose a training dataset in the space-time domain (0,1) x (0, T)
Consider a loss function: a weighted summation of the L? norm of
residuals for the equation, boundary, initial and final conditions

Train the network by minimizing the loss function defined in the
previous step

Numerical approximation of the control via PINNs

Main steps of the PINNs algorithm

design an artificial neural network y (x, t; 0) as a surrogate of the true
solution y(x, t)

Choose a training dataset in the space-time domain (0,1) x (0, T)

Consider a loss function: a weighted summation of the L? norm of
residuals for the equation, boundary, initial and final conditions

Train the network by minimizing the loss function defined in the
previous step

From the training process, optimal parameters @ defining the neural
network ¥ (x, t; @) are computed and eventually are used to get predictions
about the state y(x,t) and the control u(t), which is approximated as the
trace of y (x, t; 0) on the boundary x = 1, i.e., the surrogate control
a(t;0) =y(1,t;0)

Numerical approximation of the control via PINNs: the details

Numerical approximation of the control via PINNs: the details

Step 1: Neural network.

Numerical approximation of the control via PINNs: the details

Step 1: Neural network. We consider a Multilayer Perceptron (MLP) with
two input canals x = (x, t) € R? and an scalar output y. Precisely, ¥ (x, t;8) is

constructed as
input layer: NO(x) = x = (x,t) € R?
hidden layers: N*(x) = o (W‘N*7}(x) + b*) € R (4)
output layer: y(x;0) = Nt (x) = WNEH(x) + b- € R

where
B NV¥(x) : R% — R% is the ¢ layer with N, neurons,
m W’ e RVeXNe-1 and b € RM are, respectively, the weights and biases so

that 8 = {WZ7 be}qu are the parameters of the neural network, and
m o is a smooth activation function, e.g. the hyperbolic tangent

o(s) = tanh(s).

Numerical approximation of the control via PINNs: the details

Step 2: Training dataset.

Numerical approximation of the control via PINNs: the details

Step 2: Training dataset. A dataset 7 of scattered data is selected in the
interior domain Tine C Q7 and on the boundaries Tx—o C {0} x (0, T),

Ti—o C (0, 1) X {0}, Ti—1 C (0, 1) X {T} Thus, T = Tint U Tx=0 U Tt=0 U Ti=T.
The number of selected points in Tin is denoted by Ni:. Analogously, N, is the
number of points on the boundary x = 0, and Ny and N7t stand for the number
of points in T;—o and T¢—7, respectively.

Numerical approximation of the control via PINNs: the details

Step 2: Training dataset. A dataset 7 of scattered data is selected in the
interior domain Tine C Q7 and on the boundaries Tx—o C {0} x (0, T),

Ti—o C (0, 1) X {0}, Ti—1 C (0, 1) X {T} Thus, T = Tint U Tx=0 U Tt=0 U Ti=T.
The number of selected points in Tin is denoted by Ni:. Analogously, N, is the
number of points on the boundary x = 0, and Ny and N7t stand for the number
of points in T;—o and T¢—7, respectively.

Numerical approximation of the control via PINNs: the details

Step 3: Loss function.

Numerical approximation of the control via PINNs: the details

Step 3: Loss function. It is composed of the following six terms:

Lioe (0:Toe) = 210 Wi Pee(x:0) — 9ux(x;:0)F, X € i

Lamo (0; Tezo) = 2o0% wjol9(xj; 0)I, xj € Tx=0
L2%(0:Timo) = 3270 wiol9(xj:0) — y°(x))I7, xj € Ti=o
L (6;Tizo) = 31 wiol9e(xj:0) — y'(x)), xj € Ti=o
L% (0: Ti=r) = 307 w7l 9(x: 0), xj € Te=

L2 (0: Tir) =300 w rl9e(x;:)1, x; € Ti-T,

Numerical approximation of the control via PINNs: the details

Step 4: Training process.
minimize the loss function

L£(6;7)

i.e., we compute

The final step at the PINN algorithm amounts to

- Lint (0, 7Tnt
+Lyx=0(0; Tx=0) .
+L5% (8; Tevo) + L% (65 Tico)
LI (0: Teor) + L7 (6: Teor)
(6)

Y= argmeinL(B;’T).

Numerical approximation of the control via PINNs: the details

Step 4: Training process.
minimize the loss function

L£(6;7)

i.e., we compute

The final step at the PINN algorithm amounts to

= Lint (0, Tint
+£’x:0 (ev 7;:0) (5)
+L£5% (6; Tezo) + L1 (6; Teo)
+[”:ST (0; Te=1) + ['\t/e:IT (0; Te=71).
Y= argmeinL(B;'T). (6)

The descent algorithm ADAM (Adaptive with Moment) is chosen for

numerical implementation.

Automatic Differentation AD, which is included in

TensorFlow, is used for computation of gradients.

Numerical approximation of the control via PINNs: the details

Step 4: Training process. The final step at the PINN algorithm amounts to
minimize the loss function

E(evT) = Lint (0;7Tnt

+£x:0 (ev 7;:0) (5)
2% (6; Temo) + L1 (6; Tizo)

L (6 Tir) + Loy (6: 1),

i.e., we compute
Y= argmeinL(B;'T). (6)

The descent algorithm ADAM (Adaptive with Moment) is chosen for
numerical implementation. Automatic Differentation AD, which is included in
TensorFlow, is used for computation of gradients.

The approximation {(t; 8*) of the control u(t) is then obtained as the
restriction of y(x, t; %) to the boundary x =1, i.e.

ia(t;0")=9(1,,0%), 0<t<T. (7)

Error estimates for generalization error

Generalization error for the control

Egener () = [lu = Al 20,7y (8)
where u = u(t) is the exact control of the continuous problem and
0 = 0(t;0") is its numerical approximation via PINN algo.

Error estimates for generalization error

Generalization error for the control

Egener (1) := |[u = d|12(0,7), (8)
where u = u(t) is the exact control of the continuous problem and
0 = 0(t;0") is its numerical approximation via PINN algo.
Our goal is to get estimations for generalization error in terms of error
estimates for quadrature and the so-called training error.

Error estimates for generalization error

Generalization error for the control

Egener (1) := |[u = d|12(0,7), (8)
where u = u(t) is the exact control of the continuous problem and
0 = 0(t;0") is its numerical approximation via PINN algo.
Our goal is to get estimations for generalization error in terms of error
estimates for quadrature and the so-called training error.
Quadrature errors:

|?_?N‘ < Cq(d)N7a7 a >0, (9)

where

?::/Df(x)dx, i if ()

Error estimates for generalization error

Generalization error for the control

Egener (1) := |[u = d|12(0,7), (8)
where u = u(t) is the exact control of the continuous problem and
0 = 0(t;0") is its numerical approximation via PINN algo.
Our goal is to get estimations for generalization error in terms of error
estimates for quadrature and the so-called training error.
Quadrature errors:

|?_?N‘ < Cq(d)N7a7 a >0, (9)

where N
ff/fx)dx N Z if ()

Training error: Euain := L(0%;7T)
gtrain, int = Lint (9*. 7i~nt)
gtrain, boundary — L"x 0 (e*v 7;:0)
6train, initialpos Epos (0*1 7—t:0)

ve * 10
gtrain, initialvel »C I (9) T:O) ()
gtrain, finalpos £pos (7—1_»:T)

gtrain, finalvel Lvel (e*v 7;:T) .

Error estimates for generalization error

Theorem
Let y = y(x,t) € C*(Qr), k > 2, be the unique classical solution of (1)-(2)
and let § = y(x, t; 0) its PINN approximation. Let u = u(t) and 0 = i (t;0")

be the exact control of the continuous system (1)-(2) and its PINN
approximation, respectively. Then, the following estimate for generalization

error holds
Egener () S Ewrain, int + CN/?
i boundary CN;D‘/2
W E i, isishies A CNO_"/2 (1)
+E:train, initiatvel + CNy~ e
+Extrain, finalpos + CN;O‘/2

+€train, finalvel aF CN-I_—a/2

Error estimates for generalization error

Theorem
Let y = y(x,t) € C*(Qr), k > 2, be the unique classical solution of (1)-(2)
and let § = y(x, t; 0) its PINN approximation. Let u = u(t) and 0 = i (t;0")

be the exact control of the continuous system (1)-(2) and its PINN
approximation, respectively. Then, the following estimate for generalization
error holds
ggener (U) S 5trafn, int + CN,';ta/Q
+Etrain, boundary + CNj,-
W E i, isishies A CNO_Q/2 (11)
+Exrtrain, initiaivel + CNy /2
+Extrain, finalpos + CN;O‘/2

+€train, finalvel aF CN-I_—a/2

a/2

Main ingredients in the proof are observability inequalities and energy
estimates

Error estimates for generalization error

Lemma (E. Ferndndez-Cara and E. Zuazua)

Let T > 2. Given initial and final conditions
(2,2), (2%, z7) € L2(0,1) x H™'(0,1), there exists a control function
v € L?(0, T) such that the solution z(x, t) of the system

Ztt = Zxx, in Qr
2(x,0) = z3(x), in (0,1) (12)
2(x,0) = Z3(x) in (0,1)
2(0,t) =0, z(1,t)=v(t) on (0, T)
satisfies
Z(X7 T) = Zg—(X), zf(Xv T) = z'lf(X7 T)7 x € (Oa 1) (13)
Moreover,

0 1 0 1
IMllzem < € (128020 + 12 lu-10 + 122201 + I12Fla-10m)) » (14)

for a positive constant C = C(T), which does not depend on the initial and
final data.

Error estimates for generalization error

Consider the non-homogeneous system

Zi = Zo + F(X, 1), in Qr
z(x,0) = 2(x), in (0,1)
zt(Xv 0) = Z&(X) in (07)
2(0,t) = go(t), z(1,t) =g(t) on(0,T)

Then, there exists a positive constant C such that

||ZHc(o,T;L2(o,1)) + ||ZtHc(o,T;H—1(0,1))

<C (HZSHLZ(O,I) + ||Zé||H71(o,1) + llgoll 20,7y + g1l 20,7y + ||f”L2(o,T;L2(o,1)))

Error estimates for generalization error

Proof of theorem on generalization error.

Error estimates for generalization error

Proof of theorem on generalization error.
Let y =y — y and T = u — { be the error in the state and control variables,
respectively.

Error estimates for generalization error

Proof of theorem on generalization error.
Let y =y — y and T = u — { be the error in the state and control variables,
respectively.By linearity, ¥ solves

Yttiyxx :yﬂf}l}xxa in QT

L S n (0.1

YiX ye(X, in (0,
v, T)=9(x, T), in (0,1) (15)
Velx, T) = 9:(x, T) in (0,1)

?(OJ) 9(0,t), y(1,t) = u(t) - 9(1,t) on (0, T).

Error estimates for generalization error

Proof of theorem on generalization error.
Let y =y — y and T = u — { be the error in the state and control variables,
respectively.By linearity, ¥ solves

Yttiyxx :yﬂf}l}xxa in QT
Y(X,O):yO(X)—j}(X,O), in (0’ 1)
yt(X70) :yl(X)_yf(X7O) in (07 1) (15)
y(x, T)=9(x, T), in (0,1)
V(x, T) = 9e(x, T) in (0,1)
y(0,t) = 9(0,t), ¥(1,t)=u(t)—9(1,t) on (0, T).
V(x, t;0) is decomposed as ¥ = ¥* + ¥>, where
.V%t _y)l« =0, in Qr
yl(xvo) :yo(x)f}?()go)v in (Ov 1) (16)
Y:(x,0) = y*(x) = 9:(x,0) in (0,1)
y'(0,t) =0, y'(1,t)=u(t)—9(1,t) on(0,T).
y?t - }7>2<x = Yer — Poocs in Qr
¥’ (x,0) =0, ¥3(x,0)=0 in (0,1)
y2(X7 T) :}A/(Xv T)_yl(xa T)v n (071) (17)
yf(xv T) = }A/f(xv T) 7)711'()(7 T)7 n (07 1)
y(0,t) = 9(0,t), ¥*(1,t)=0 on (0, T).

Error estimates for generalization error

Proof of theorem on generalization error.

By applying the observability inequality to system (16) and the energy estimate
to (17),

llu— ﬁHB(o,T)

Sy - (50l 20,1) + lly* — (0l g-1(0,1) + ¥ (-, T2 + Iy (-, Tlu-100,1)

Error estimates for generalization error

Proof of theorem on generalization error.

By applying the observability inequality to system (16) and the energy estimate
to (17),

llu— ﬁHB(o,T)
Sy - (50l 20,1) + lly* — (0l g-1(0,1) + ¥ (-, T2 + Iy (-, Tlu-100,1)
Sy - (0l 20,1) + lly* = 7,0l 20,1y + 1Y (5 Tl 20,1) + 1972 (5 Tl 20,1

+HY2('7 T)HLZ(OJ) + Hﬁ(» T)HH*I(O,I)

Error estimates for generalization error

Proof of theorem on generalization error.

By applying the observability inequality to system (16) and the energy estimate
to (17),

llu— ﬁHB(o,T)

Sy® = 9,020,y + Iyt = 96 0) =100,y + 1V (5 Dllizo,ny + 172 Tll-100,1)
Sy =902 + Iyt = 9,02y + 19 Dl + 19, Tl
+Iv3 (-, 20,1y + v (-, Tllu-10,1)

Sy® =960z, + 1Iy' = 96, 0)ll 20,1y + 19 Tllizo,y + 1965 2o,
H9 (0,) 20,7y + 17ee — Pxxll 200, 7:22(0,1)-

(18)

The result then follows by applying estimates error for quadrature (9).

A numerical experiment (preliminary results)

Yt = Yoo
y(x,0) = sin (7x),
yf(Xa 0) =0

y(0,t) =0, y(1,t)=u(t)
y(X72) = yt(X7 2) =0

in (0,1) x (0,2)
in (0,1)
in (0,1)
on (0,2)
in (0,1)

A numerical experiment (preliminary results)

Vit = Yxs in (0,1) x (0,2)
y(x,0) = sin (7x), in (0,1)
y:(x,0) =0 in (0,1)
y(0,t) =0, y(1,t)=u(t) on (0,2)
y(x,2) = ye(x,2) =0 in (0,1)

Numerical implentation via DeepXDE Python library

Multilayer perceptron with 4 hidden layers and 50 neurons in each layer
Activation function: tanh

Dataset for training: Sobol

Optimizer: ADAM + L-BFGS-B

Initializer: Glorot uniform

A numerical experiment (preliminary results)

Yit = Yo in (0,1) x (0,2)
y(x,0) = sin (7x), in (0,1)
y:(x,0) =0 in (0,1)
y(0,t) =0, y(1,t)=u(t) on (0,2)
y(x,2) = ye(x,2) =0 in (0,1)

Numerical implentation via DeepXDE Python library
m Multilayer perceptron with 4 hidden layers and 50 neurons in each layer
m Activation function: tanh
m Dataset for training: Sobol
m Optimizer: ADAM + L-BFGS-B
m Initializer: Glorot uniform

Table: Summary of results for training errors and for 500 interior points and 50
boundary points.

19 = 9cll 9O Mly® = 9GO Mly' = 90N 9 DI 119:C, T

8.8x107% 21x107° 1.1 x10°° 5.7 x107° 34x107% 73x10°®

A numerical experiment (preliminary results)

Figure: Predicted solution.

Scope of the proposed methodology

m The same approach applies to many other controllability problems for
PDEs both linear and nonlinear.

Scope of the proposed methodology

m The same approach applies to many other controllability problems for
PDEs both linear and nonlinear.

m The method may be adapted to averaged control of parametric PDEs
where the number of parameters may be large.

Scope of the proposed methodology

m The same approach applies to many other controllability problems for
PDEs both linear and nonlinear.

m The method may be adapted to averaged control of parametric PDEs
where the number of parameters may be large.

m A challenging and high dimensional problem is to design a ML algorithm
to approximate the initial data to control mapping

(uo, u1> — u(t)

Scope of the proposed methodology

m The same approach applies to many other controllability problems for
PDEs both linear and nonlinear.

m The method may be adapted to averaged control of parametric PDEs
where the number of parameters may be large.

m A challenging and high dimensional problem is to design a ML algorithm
to approximate the initial data to control mapping

(uo, u1> — u(t)

	Supervised Learning
	Set up

