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A toy model: controllability of the linear wave equation
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A toy model: controllability of the linear wave equation

The exact controllability problem: given initial data (y°(x), y*(x)) and a
positive time T > 0 find a boundary control u(t) such that the solution y(x, t)
of the system

Ver = Y, in (0,1) x (0, T)
.V(X7 0) :yo(X)7 in (07 1) (1)
ye(x,0) = y*(x) in (0,1)

y(0,t) =0, y(1,t)=u(t) on(0,T)
satisfies
y(Xa T) = .yl'(X7 T) =0 in (07 1) (2)
For T = 2/c this problem has the explicit solution
%yo(lfct)Jr%fll_dyl(s)ds 0<t<1/c

o) — 3)
—3 (et =)+ % [o, () ds 1/e<t<2/c
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Main steps of the PINNs algorithm

design an artificial neural network y (x, t; 0) as a surrogate of the true
solution y(x, t)

Choose a training dataset in the space-time domain (0,1) x (0, T)

Consider a loss function: a weighted summation of the L? norm of
residuals for the equation, boundary, initial and final conditions

Train the network by minimizing the loss function defined in the
previous step

From the training process, optimal parameters @ defining the neural
network ¥ (x, t; @) are computed and eventually are used to get predictions
about the state y(x,t) and the control u(t), which is approximated as the
trace of y (x, t; 0) on the boundary x = 1, i.e., the surrogate control
a(t;0) =y(1,t;0)
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Step 1: Neural network. We consider a Multilayer Perceptron (MLP) with
two input canals x = (x, t) € R? and an scalar output y. Precisely, ¥ (x, t;8) is

constructed as
input layer: NO(x) = x = (x,t) € R?
hidden layers:  N*(x) = o (W‘N*7}(x) + b*) € R (4)
output layer:  y(x;0) = Nt (x) = WNEH(x) + b- € R

where
B NV¥(x) : R% — R% is the ¢ layer with N, neurons,
m W’ e RVeXNe-1 and b € RM are, respectively, the weights and biases so

that 8 = {WZ7 be}qu are the parameters of the neural network, and
m o is a smooth activation function, e.g. the hyperbolic tangent

o(s) = tanh(s).
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Step 3: Loss function. It is composed of the following six terms:

Lioe (0:Toe) = 210 Wi Pee(x:0) — 9ux(x;:0)F, X € i

Lamo (0; Tezo) = 2o0% wjol9(xj; 0)I, xj € Tx=0
L2%(0:Timo) = 3270 wiol9(xj:0) — y°(x))I7, xj € Ti=o
L (6;Tizo) = 31 wiol9e(xj:0) — y'(x)), xj € Ti=o
L% (0: Ti=r) = 307 w7l 9(x: 0), xj € Te=

L2 (0: Tir) =300 w rl9e(x;: )1, x; € Ti-T,
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Step 4: Training process.
minimize the loss function
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Step 4: Training process. The final step at the PINN algorithm amounts to
minimize the loss function

E(evT) = Lint (0;7Tnt

+£x:0 (ev 7;:0) (5)
2% (6; Temo) + L1 (6; Tizo)

L (6 Tir) + Loy (6: 1),

i.e., we compute
Y= argmeinL(B;'T). (6)

The descent algorithm ADAM (Adaptive with Moment) is chosen for
numerical implementation. Automatic Differentation AD, which is included in
TensorFlow, is used for computation of gradients.

The approximation {(t; 8*) of the control u(t) is then obtained as the
restriction of y(x, t; %) to the boundary x =1, i.e.

ia(t;0")=9(1,,0%), 0<t<T. (7)
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Generalization error for the control

Egener (1) := |[u = d|12(0,7), (8)
where u = u(t) is the exact control of the continuous problem and
0 = 0(t;0") is its numerical approximation via PINN algo.
Our goal is to get estimations for generalization error in terms of error
estimates for quadrature and the so-called training error.
Quadrature errors:

|?_?N‘ < Cq(d)N7a7 a >0, (9)

where N
ff/fx)dx N Z if ()

Training error: Euain := L(0%;7T)
gtrain, int = Lint (9*. 7i~nt)
gtrain, boundary — L"x 0 (e*v 7;:0)
6train, initialpos Epos (0*1 7—t:0)

ve * 10
gtrain, initialvel »C I (9 ) T:O) ( )
gtrain, finalpos £pos ( 7—1_»:T)

gtrain, finalvel Lvel (e*v 7;:T) .



Error estimates for generalization error

Theorem
Let y = y(x,t) € C*(Qr), k > 2, be the unique classical solution of (1)-(2)
and let § = y(x, t; 0) its PINN approximation. Let u = u(t) and 0 = i (t;0")

be the exact control of the continuous system (1)-(2) and its PINN
approximation, respectively. Then, the following estimate for generalization

error holds
Egener () S Ewrain, int + CN/?
i boundary CN;D‘/2
W E i, isishies A CNO_"/2 (1)
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Theorem
Let y = y(x,t) € C*(Qr), k > 2, be the unique classical solution of (1)-(2)
and let § = y(x, t; 0) its PINN approximation. Let u = u(t) and 0 = i (t;0")

be the exact control of the continuous system (1)-(2) and its PINN
approximation, respectively. Then, the following estimate for generalization
error holds
ggener (U) S 5trafn, int + CN,';ta/Q
+Etrain, boundary + CNj,-
W E i, isishies A CNO_Q/2 (11)
+Exrtrain, initiaivel + CNy /2
+Extrain, finalpos + CN;O‘/2

+€train, finalvel aF CN-I_—a/2

a/2

Main ingredients in the proof are observability inequalities and energy
estimates



Error estimates for generalization error

Lemma (E. Ferndndez-Cara and E. Zuazua)

Let T > 2. Given initial and final conditions
(2,2), (2%, z7) € L2(0,1) x H™'(0,1), there exists a control function
v € L?(0, T) such that the solution z(x, t) of the system

Ztt = Zxx, in Qr
2(x,0) = z3(x), in (0,1) (12)
2(x,0) = Z3(x) in (0,1)
2(0,t) =0, z(1,t)=v(t) on (0, T)
satisfies
Z(X7 T) = Zg—(X), zf(Xv T) = z'lf(X7 T)7 x € (Oa 1) (13)
Moreover,

0 1 0 1
IMllzem < € (128020 + 12 lu-10 + 122201 + I12Fla-10m)) » (14)

for a positive constant C = C(T), which does not depend on the initial and
final data.



Error estimates for generalization error

Consider the non-homogeneous system

Zi = Zo + F(X, 1), in Qr
z(x,0) = 2(x), in (0,1)
zt(Xv 0) = Z&(X) in (07 )
2(0,t) = go(t), z(1,t) =g(t) on(0,T)

Then, there exists a positive constant C such that

||ZHc(o,T;L2(o,1)) + ||ZtHc(o,T;H—1(0,1))

<C (HZSHLZ(O,I) + ||Zé||H71(o,1) + llgoll 20,7y + g1l 20,7y + ||f”L2(o,T;L2(o,1)))
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Proof of theorem on generalization error.
Let y =y — y and T = u — { be the error in the state and control variables,
respectively.By linearity, ¥ solves

Yttiyxx :yﬂf}l}xxa in QT
Y(X,O):yO(X)—j}(X,O), in (0’ 1)
yt(X70) :yl(X)_yf(X7O) in (07 1) (15)
y(x, T)=9(x, T), in (0,1)
V(x, T) = 9e(x, T) in (0,1)
y(0,t) = 9(0,t), ¥(1,t)=u(t)—9(1,t) on (0, T).
V(x, t;0) is decomposed as ¥ = ¥* + ¥>, where
.V%t _y)l« =0, in Qr
yl(xvo) :yo(x)f}?()go)v in (Ov 1) (16)
Y:(x,0) = y*(x) = 9:(x,0) in (0,1)
y'(0,t) =0, y'(1,t)=u(t)—9(1,t) on(0,T).
y?t - }7>2<x = Yer — Poocs in Qr
¥’ (x,0) =0, ¥3(x,0)=0 in (0,1)
y2(X7 T) :}A/(Xv T)_yl(xa T)v n (071) (17)
yf(xv T) = }A/f(xv T) 7)711'()(7 T)7 n (07 1)
y(0,t) = 9(0,t), ¥*(1,t)=0 on (0, T).
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Proof of theorem on generalization error.

By applying the observability inequality to system (16) and the energy estimate
to (17),

llu— ﬁHB(o,T)
Sy - (50l 20,1) + lly* — (0l g-1(0,1) + ¥ (-, T2 + Iy (-, Tlu-100,1)
Sy - (0l 20,1) + lly* = 7,0l 20,1y + 1Y (5 Tl 20,1) + 1972 (5 Tl 20,1

+HY2('7 T)HLZ(OJ) + Hﬁ(» T)HH*I(O,I)
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Proof of theorem on generalization error.

By applying the observability inequality to system (16) and the energy estimate
to (17),

llu— ﬁHB(o,T)

Sy® = 9,020,y + Iyt = 96 0) =100,y + 1V (5 Dllizo,ny + 172 Tll-100,1)
Sy =902 + Iyt = 9,02y + 19 Dl + 19, Tl
+Iv3 (-, 20,1y + v (-, Tllu-10,1)

Sy® =960z, + 1Iy' = 96, 0)ll 20,1y + 19 Tllizo,y + 1965 2o,
H9 (0, ) 20,7y + 17ee — Pxxll 200, 7:22(0,1)-

(18)

The result then follows by applying estimates error for quadrature (9).



A numerical experiment (preliminary results)
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A numerical experiment (preliminary results)

Yit = Yo in (0,1) x (0,2)
y(x,0) = sin (7x), in (0,1)
y:(x,0) =0 in (0,1)
y(0,t) =0, y(1,t)=u(t) on (0,2)
y(x,2) = ye(x,2) =0 in (0,1)

Numerical implentation via DeepXDE Python library
m Multilayer perceptron with 4 hidden layers and 50 neurons in each layer
m Activation function: tanh
m Dataset for training: Sobol
m Optimizer: ADAM + L-BFGS-B
m Initializer: Glorot uniform

Table: Summary of results for training errors and for 500 interior points and 50
boundary points.

19 = 9cll 9O Mly® = 9GO Mly' = 90N 9 DI 119:C, T

8.8x107% 21x107° 1.1 x10°° 5.7 x107° 34x107% 73x10°®




A numerical experiment (preliminary results)

Figure: Predicted solution.
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