
A first step towards numerical approximation of
controllability problems via Deep- Learning-based

methods

Francisco Periago

Universidad Politécnica de Cartagena. Spain
Supported by Fundación Séneca-Agencia de Ciencia y Tecnoloǵıa de la

Región de Murcia. Mobility program Jiménez de la Espada.

Ongoing work in collaboration with Carlos J. Garćıa Cervera
(University of California, Santa Barbara), and Mathieu Kessler

(Universidad Politécnica de Cartagena)

Workshop on New Bridges between Mathematics and Data Science
November 8th − 11th, Valladolid, Spain

Goals, outline and references

Goals

Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
Provide error estimates for the so-called generalization error

Outline

Toy model: boundary controllability of the linear wave equation
We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
Analysis of error estimates for generalization error
Numerical implementation via DeepXDE Python library
Numerical simulation results
Extension to other PDEs, mainly where high-dimensionality plays a role

References

Raisi, M., Perdikaris, P. and Karniadakis, G: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput.
Physics 378, 686-707, 2019.

Lu, L., Meng, X., Mao, Z. and Karniadakis, G.: DeepXDE: A Deep
Learning Library for Solving Differential Equations, SIAM Review, 63 (1),
208-228, 2021.

Goals, outline and references

Goals

Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs

Provide error estimates for the so-called generalization error

Outline

Toy model: boundary controllability of the linear wave equation
We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
Analysis of error estimates for generalization error
Numerical implementation via DeepXDE Python library
Numerical simulation results
Extension to other PDEs, mainly where high-dimensionality plays a role

References

Raisi, M., Perdikaris, P. and Karniadakis, G: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput.
Physics 378, 686-707, 2019.

Lu, L., Meng, X., Mao, Z. and Karniadakis, G.: DeepXDE: A Deep
Learning Library for Solving Differential Equations, SIAM Review, 63 (1),
208-228, 2021.

Goals, outline and references

Goals

Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
Provide error estimates for the so-called generalization error

Outline

Toy model: boundary controllability of the linear wave equation
We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
Analysis of error estimates for generalization error
Numerical implementation via DeepXDE Python library
Numerical simulation results
Extension to other PDEs, mainly where high-dimensionality plays a role

References

Raisi, M., Perdikaris, P. and Karniadakis, G: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput.
Physics 378, 686-707, 2019.

Lu, L., Meng, X., Mao, Z. and Karniadakis, G.: DeepXDE: A Deep
Learning Library for Solving Differential Equations, SIAM Review, 63 (1),
208-228, 2021.

Goals, outline and references

Goals

Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
Provide error estimates for the so-called generalization error

Outline

Toy model: boundary controllability of the linear wave equation
We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
Analysis of error estimates for generalization error
Numerical implementation via DeepXDE Python library
Numerical simulation results
Extension to other PDEs, mainly where high-dimensionality plays a role

References

Raisi, M., Perdikaris, P. and Karniadakis, G: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput.
Physics 378, 686-707, 2019.

Lu, L., Meng, X., Mao, Z. and Karniadakis, G.: DeepXDE: A Deep
Learning Library for Solving Differential Equations, SIAM Review, 63 (1),
208-228, 2021.

Goals, outline and references

Goals

Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
Provide error estimates for the so-called generalization error

Outline

Toy model: boundary controllability of the linear wave equation

We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
Analysis of error estimates for generalization error
Numerical implementation via DeepXDE Python library
Numerical simulation results
Extension to other PDEs, mainly where high-dimensionality plays a role

References

Raisi, M., Perdikaris, P. and Karniadakis, G: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput.
Physics 378, 686-707, 2019.

Lu, L., Meng, X., Mao, Z. and Karniadakis, G.: DeepXDE: A Deep
Learning Library for Solving Differential Equations, SIAM Review, 63 (1),
208-228, 2021.

Goals, outline and references

Goals

Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
Provide error estimates for the so-called generalization error

Outline

Toy model: boundary controllability of the linear wave equation
We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model

Analysis of error estimates for generalization error
Numerical implementation via DeepXDE Python library
Numerical simulation results
Extension to other PDEs, mainly where high-dimensionality plays a role

References

Raisi, M., Perdikaris, P. and Karniadakis, G: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput.
Physics 378, 686-707, 2019.

Lu, L., Meng, X., Mao, Z. and Karniadakis, G.: DeepXDE: A Deep
Learning Library for Solving Differential Equations, SIAM Review, 63 (1),
208-228, 2021.

Goals, outline and references

Goals

Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
Provide error estimates for the so-called generalization error

Outline

Toy model: boundary controllability of the linear wave equation
We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
Analysis of error estimates for generalization error

Numerical implementation via DeepXDE Python library
Numerical simulation results
Extension to other PDEs, mainly where high-dimensionality plays a role

References

Raisi, M., Perdikaris, P. and Karniadakis, G: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput.
Physics 378, 686-707, 2019.

Lu, L., Meng, X., Mao, Z. and Karniadakis, G.: DeepXDE: A Deep
Learning Library for Solving Differential Equations, SIAM Review, 63 (1),
208-228, 2021.

Goals, outline and references

Goals

Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
Provide error estimates for the so-called generalization error

Outline

Toy model: boundary controllability of the linear wave equation
We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
Analysis of error estimates for generalization error
Numerical implementation via DeepXDE Python library

Numerical simulation results
Extension to other PDEs, mainly where high-dimensionality plays a role

References

Raisi, M., Perdikaris, P. and Karniadakis, G: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput.
Physics 378, 686-707, 2019.

Lu, L., Meng, X., Mao, Z. and Karniadakis, G.: DeepXDE: A Deep
Learning Library for Solving Differential Equations, SIAM Review, 63 (1),
208-228, 2021.

Goals, outline and references

Goals

Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
Provide error estimates for the so-called generalization error

Outline

Toy model: boundary controllability of the linear wave equation
We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
Analysis of error estimates for generalization error
Numerical implementation via DeepXDE Python library
Numerical simulation results

Extension to other PDEs, mainly where high-dimensionality plays a role

References

Raisi, M., Perdikaris, P. and Karniadakis, G: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput.
Physics 378, 686-707, 2019.

Lu, L., Meng, X., Mao, Z. and Karniadakis, G.: DeepXDE: A Deep
Learning Library for Solving Differential Equations, SIAM Review, 63 (1),
208-228, 2021.

Goals, outline and references

Goals

Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
Provide error estimates for the so-called generalization error

Outline

Toy model: boundary controllability of the linear wave equation
We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
Analysis of error estimates for generalization error
Numerical implementation via DeepXDE Python library
Numerical simulation results
Extension to other PDEs, mainly where high-dimensionality plays a role

References

Raisi, M., Perdikaris, P. and Karniadakis, G: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput.
Physics 378, 686-707, 2019.

Lu, L., Meng, X., Mao, Z. and Karniadakis, G.: DeepXDE: A Deep
Learning Library for Solving Differential Equations, SIAM Review, 63 (1),
208-228, 2021.

Goals, outline and references

Goals

Explore the use of Deep-learning-based algorithms to approximate
numerically controllability problems for PDEs
Provide error estimates for the so-called generalization error

Outline

Toy model: boundary controllability of the linear wave equation
We adapt Physics-Informed-Neural-Networks (PINNs) to approximate
numerically the above toy model
Analysis of error estimates for generalization error
Numerical implementation via DeepXDE Python library
Numerical simulation results
Extension to other PDEs, mainly where high-dimensionality plays a role

References

Raisi, M., Perdikaris, P. and Karniadakis, G: Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations, J. Comput.
Physics 378, 686-707, 2019.

Lu, L., Meng, X., Mao, Z. and Karniadakis, G.: DeepXDE: A Deep
Learning Library for Solving Differential Equations, SIAM Review, 63 (1),
208-228, 2021.

A toy model: controllability of the linear wave equation

The exact controllability problem: given initial data (y 0(x), y 1(x)) and a
positive time T > 0 find a boundary control u(t) such that the solution y(x , t)
of the system

ytt = c2yxx , in (0, 1)× (0,T)
y(x , 0) = y 0(x), in (0, 1)
yt(x , 0) = y 1(x) in (0, 1)
y(0, t) = 0, y(1, t) = u(t) on (0,T)

(1)

satisfies
y(x ,T) = yt(x ,T) = 0 in (0, 1). (2)

For T = 2/c this problem has the explicit solution

u(t) =


1
2
y 0(1− ct) + 1

2c

∫ 1

1−ct
y 1(s) ds 0 ≤ t ≤ 1/c

− 1
2
y 0(ct − 1) + 1

2c

∫ 1

ct−1
y 1(s) ds 1/c ≤ t ≤ 2/c

(3)

A toy model: controllability of the linear wave equation

The exact controllability problem: given initial data (y 0(x), y 1(x)) and a
positive time T > 0 find a boundary control u(t) such that the solution y(x , t)
of the system

ytt = c2yxx , in (0, 1)× (0,T)
y(x , 0) = y 0(x), in (0, 1)
yt(x , 0) = y 1(x) in (0, 1)
y(0, t) = 0, y(1, t) = u(t) on (0,T)

(1)

satisfies
y(x ,T) = yt(x ,T) = 0 in (0, 1). (2)

For T = 2/c this problem has the explicit solution

u(t) =


1
2
y 0(1− ct) + 1

2c

∫ 1

1−ct
y 1(s) ds 0 ≤ t ≤ 1/c

− 1
2
y 0(ct − 1) + 1

2c

∫ 1

ct−1
y 1(s) ds 1/c ≤ t ≤ 2/c

(3)

A toy model: controllability of the linear wave equation

The exact controllability problem: given initial data (y 0(x), y 1(x)) and a
positive time T > 0 find a boundary control u(t) such that the solution y(x , t)
of the system

ytt = c2yxx , in (0, 1)× (0,T)
y(x , 0) = y 0(x), in (0, 1)
yt(x , 0) = y 1(x) in (0, 1)
y(0, t) = 0, y(1, t) = u(t) on (0,T)

(1)

satisfies
y(x ,T) = yt(x ,T) = 0 in (0, 1). (2)

For T = 2/c this problem has the explicit solution

u(t) =


1
2
y 0(1− ct) + 1

2c

∫ 1

1−ct
y 1(s) ds 0 ≤ t ≤ 1/c

− 1
2
y 0(ct − 1) + 1

2c

∫ 1

ct−1
y 1(s) ds 1/c ≤ t ≤ 2/c

(3)

Numerical approximation of the control via PINNs

Main steps of the PINNs algorithm

1 design an artificial neural network ŷ (x , t;θ) as a surrogate of the true
solution y(x , t)

2 Choose a training dataset in the space-time domain (0, 1)× (0,T)

3 Consider a loss function: a weighted summation of the L2 norm of
residuals for the equation, boundary, initial and final conditions

4 Train the network by minimizing the loss function defined in the
previous step
From the training process, optimal parameters θ defining the neural
network ŷ (x , t;θ) are computed and eventually are used to get predictions
about the state y(x , t) and the control u(t), which is approximated as the
trace of ŷ (x , t;θ) on the boundary x = 1, i.e., the surrogate control
û(t;θ) = ŷ (1, t;θ)

Numerical approximation of the control via PINNs

Main steps of the PINNs algorithm

1 design an artificial neural network ŷ (x , t;θ) as a surrogate of the true
solution y(x , t)

2 Choose a training dataset in the space-time domain (0, 1)× (0,T)

3 Consider a loss function: a weighted summation of the L2 norm of
residuals for the equation, boundary, initial and final conditions

4 Train the network by minimizing the loss function defined in the
previous step
From the training process, optimal parameters θ defining the neural
network ŷ (x , t;θ) are computed and eventually are used to get predictions
about the state y(x , t) and the control u(t), which is approximated as the
trace of ŷ (x , t;θ) on the boundary x = 1, i.e., the surrogate control
û(t;θ) = ŷ (1, t;θ)

Numerical approximation of the control via PINNs

Main steps of the PINNs algorithm

1 design an artificial neural network ŷ (x , t;θ) as a surrogate of the true
solution y(x , t)

2 Choose a training dataset in the space-time domain (0, 1)× (0,T)

3 Consider a loss function: a weighted summation of the L2 norm of
residuals for the equation, boundary, initial and final conditions

4 Train the network by minimizing the loss function defined in the
previous step
From the training process, optimal parameters θ defining the neural
network ŷ (x , t;θ) are computed and eventually are used to get predictions
about the state y(x , t) and the control u(t), which is approximated as the
trace of ŷ (x , t;θ) on the boundary x = 1, i.e., the surrogate control
û(t;θ) = ŷ (1, t;θ)

Numerical approximation of the control via PINNs

Main steps of the PINNs algorithm

1 design an artificial neural network ŷ (x , t;θ) as a surrogate of the true
solution y(x , t)

2 Choose a training dataset in the space-time domain (0, 1)× (0,T)

3 Consider a loss function: a weighted summation of the L2 norm of
residuals for the equation, boundary, initial and final conditions

4 Train the network by minimizing the loss function defined in the
previous step
From the training process, optimal parameters θ defining the neural
network ŷ (x , t;θ) are computed and eventually are used to get predictions
about the state y(x , t) and the control u(t), which is approximated as the
trace of ŷ (x , t;θ) on the boundary x = 1, i.e., the surrogate control
û(t;θ) = ŷ (1, t;θ)

Numerical approximation of the control via PINNs

Main steps of the PINNs algorithm

1 design an artificial neural network ŷ (x , t;θ) as a surrogate of the true
solution y(x , t)

2 Choose a training dataset in the space-time domain (0, 1)× (0,T)

3 Consider a loss function: a weighted summation of the L2 norm of
residuals for the equation, boundary, initial and final conditions

4 Train the network by minimizing the loss function defined in the
previous step
From the training process, optimal parameters θ defining the neural
network ŷ (x , t;θ) are computed and eventually are used to get predictions
about the state y(x , t) and the control u(t), which is approximated as the
trace of ŷ (x , t;θ) on the boundary x = 1, i.e., the surrogate control
û(t;θ) = ŷ (1, t;θ)

Numerical approximation of the control via PINNs

Main steps of the PINNs algorithm

1 design an artificial neural network ŷ (x , t;θ) as a surrogate of the true
solution y(x , t)

2 Choose a training dataset in the space-time domain (0, 1)× (0,T)

3 Consider a loss function: a weighted summation of the L2 norm of
residuals for the equation, boundary, initial and final conditions

4 Train the network by minimizing the loss function defined in the
previous step

From the training process, optimal parameters θ defining the neural
network ŷ (x , t;θ) are computed and eventually are used to get predictions
about the state y(x , t) and the control u(t), which is approximated as the
trace of ŷ (x , t;θ) on the boundary x = 1, i.e., the surrogate control
û(t;θ) = ŷ (1, t;θ)

Numerical approximation of the control via PINNs

Main steps of the PINNs algorithm

1 design an artificial neural network ŷ (x , t;θ) as a surrogate of the true
solution y(x , t)

2 Choose a training dataset in the space-time domain (0, 1)× (0,T)

3 Consider a loss function: a weighted summation of the L2 norm of
residuals for the equation, boundary, initial and final conditions

4 Train the network by minimizing the loss function defined in the
previous step
From the training process, optimal parameters θ defining the neural
network ŷ (x , t;θ) are computed and eventually are used to get predictions
about the state y(x , t) and the control u(t), which is approximated as the
trace of ŷ (x , t;θ) on the boundary x = 1, i.e., the surrogate control
û(t;θ) = ŷ (1, t;θ)

Numerical approximation of the control via PINNs: the details

Step 1: Neural network. We consider a Multilayer Perceptron (MLP) with
two input canals x = (x , t) ∈ R2 and an scalar output ŷ . Precisely, ŷ (x , t;θ) is
constructed as

input layer: N 0(x) = x = (x , t) ∈ R2

hidden layers: N `(x) = σ
(
W

`N `−1(x) + b
`
)
∈ RN`

output layer: ŷ (x ;θ) = N L(x) = W
LN L−1(x) + b

L ∈ R
(4)

where

N `(x) : Rdin → Rdout is the ` layer with N` neurons,
W

` ∈ RN`×N`−1 and b` ∈ RN` are, respectively, the weights and biases so
that θ =

{
W

`, b`
}

1≤`≤L
are the parameters of the neural network, and

σ is a smooth activation function, e.g. the hyperbolic tangent
σ(s) = tanh(s).

Numerical approximation of the control via PINNs: the details

Step 1: Neural network.

We consider a Multilayer Perceptron (MLP) with
two input canals x = (x , t) ∈ R2 and an scalar output ŷ . Precisely, ŷ (x , t;θ) is
constructed as

input layer: N 0(x) = x = (x , t) ∈ R2

hidden layers: N `(x) = σ
(
W

`N `−1(x) + b
`
)
∈ RN`

output layer: ŷ (x ;θ) = N L(x) = W
LN L−1(x) + b

L ∈ R
(4)

where

N `(x) : Rdin → Rdout is the ` layer with N` neurons,
W

` ∈ RN`×N`−1 and b` ∈ RN` are, respectively, the weights and biases so
that θ =

{
W

`, b`
}

1≤`≤L
are the parameters of the neural network, and

σ is a smooth activation function, e.g. the hyperbolic tangent
σ(s) = tanh(s).

Numerical approximation of the control via PINNs: the details

Step 1: Neural network. We consider a Multilayer Perceptron (MLP) with
two input canals x = (x , t) ∈ R2 and an scalar output ŷ . Precisely, ŷ (x , t;θ) is
constructed as

input layer: N 0(x) = x = (x , t) ∈ R2

hidden layers: N `(x) = σ
(
W

`N `−1(x) + b
`
)
∈ RN`

output layer: ŷ (x ;θ) = N L(x) = W
LN L−1(x) + b

L ∈ R
(4)

where

N `(x) : Rdin → Rdout is the ` layer with N` neurons,
W

` ∈ RN`×N`−1 and b` ∈ RN` are, respectively, the weights and biases so
that θ =

{
W

`, b`
}

1≤`≤L
are the parameters of the neural network, and

σ is a smooth activation function, e.g. the hyperbolic tangent
σ(s) = tanh(s).

Numerical approximation of the control via PINNs: the details

Step 2: Training dataset.

A dataset T of scattered data is selected in the
interior domain Tint ⊂ QT and on the boundaries Tx=0 ⊂ {0} × (0,T),
Tt=0 ⊂ (0, 1)× {0}, Tt=T ⊂ (0, 1)× {T}. Thus, T = Tint ∪ Tx=0 ∪ Tt=0 ∪ Tt=T .
The number of selected points in Tint is denoted by Nint . Analogously, Nb is the
number of points on the boundary x = 0, and N0 and NT stand for the number
of points in Tt=0 and Tt=T , respectively.

Figure 2: An illustration of the training set S for the one-dimensional heat equation (3.1) with randomly chosen training
points. Points in Sint are depicted with blue dots and those in St b ∪ Ssb are depicted with black crosses.

that the cumulative generalization error (2.26) is very low to begin with and decays with the number of
boundary training points Ntb = Nsb. The effect of the number of interior training points seems to be
minimal in this case. Similarly, the computable upper bound (3.16) also decays with respect to increasing
the number of boundary training points. However, this upper bound does appear to be a significant
overestimate as it is almost three orders to magnitude greater than the actual generalization error. This
is not surprising as we had used non-sharp estimates such as triangle inequality and Grönwall’s inequality
rather indiscriminately while deriving (3.16). Moreover, obtaining sharp bounds on generalization errors
is a notoriously hard problem in machine learning [1,35] with overestimates of tens of orders of magnitude.
More importantly, both the computed generalization error and the upper bound follow the same decay
in the number of training samples. Surprisingly, the training errors (2.27) are slightly larger than the
computed generalization errors for this example. Note that this observation is still consistent with the
bound (3.16). Given the fact that the training error is defined in terms of residuals and the generalization
error is the error in approximating the solution of the underlying PDE by the PINN, there is no reason, a
priori, to expect that the generalization error should be greater than the training error.

K − 1 d q λreg λ

1D Heat Equation 2, 4, 8 12, 16, 20 1, 2 0, 10−6, 10−5, 10−4, 10−3 0.01, 0.1, 1, 10

ND Heat Equation 4 20 2 0, 10−6, 10−5 0.1, 1, 10

Burgers Equation 4, 8, 10 16, 20, 24 2 0, 10−6, 10−5 0.1, 1, 10

Euler Equations, Taylor Vortex 4, 8, 12 16, 20, 24 1, 2 0, 10−6, 10−5 0.1, 1, 10

Euler Equations, Double Shear Layer 16, 20, 24 32, 40, 48 1, 2 0, 10−6, 10−5 0.1, 1, 10

Table 1: Hyperparameter configurations employed in the ensemble training of PINNs.

3.4.2 Ensemble training

A PINN involves several hyperparameters, some of which are shown in Table 1. An user is always
confronted with the question of which parameter to choose. The theory, presented in this paper and in

16

Numerical approximation of the control via PINNs: the details

Step 2: Training dataset. A dataset T of scattered data is selected in the
interior domain Tint ⊂ QT and on the boundaries Tx=0 ⊂ {0} × (0,T),
Tt=0 ⊂ (0, 1)× {0}, Tt=T ⊂ (0, 1)× {T}. Thus, T = Tint ∪ Tx=0 ∪ Tt=0 ∪ Tt=T .
The number of selected points in Tint is denoted by Nint . Analogously, Nb is the
number of points on the boundary x = 0, and N0 and NT stand for the number
of points in Tt=0 and Tt=T , respectively.

Figure 2: An illustration of the training set S for the one-dimensional heat equation (3.1) with randomly chosen training
points. Points in Sint are depicted with blue dots and those in St b ∪ Ssb are depicted with black crosses.

that the cumulative generalization error (2.26) is very low to begin with and decays with the number of
boundary training points Ntb = Nsb. The effect of the number of interior training points seems to be
minimal in this case. Similarly, the computable upper bound (3.16) also decays with respect to increasing
the number of boundary training points. However, this upper bound does appear to be a significant
overestimate as it is almost three orders to magnitude greater than the actual generalization error. This
is not surprising as we had used non-sharp estimates such as triangle inequality and Grönwall’s inequality
rather indiscriminately while deriving (3.16). Moreover, obtaining sharp bounds on generalization errors
is a notoriously hard problem in machine learning [1,35] with overestimates of tens of orders of magnitude.
More importantly, both the computed generalization error and the upper bound follow the same decay
in the number of training samples. Surprisingly, the training errors (2.27) are slightly larger than the
computed generalization errors for this example. Note that this observation is still consistent with the
bound (3.16). Given the fact that the training error is defined in terms of residuals and the generalization
error is the error in approximating the solution of the underlying PDE by the PINN, there is no reason, a
priori, to expect that the generalization error should be greater than the training error.

K − 1 d q λreg λ

1D Heat Equation 2, 4, 8 12, 16, 20 1, 2 0, 10−6, 10−5, 10−4, 10−3 0.01, 0.1, 1, 10

ND Heat Equation 4 20 2 0, 10−6, 10−5 0.1, 1, 10

Burgers Equation 4, 8, 10 16, 20, 24 2 0, 10−6, 10−5 0.1, 1, 10

Euler Equations, Taylor Vortex 4, 8, 12 16, 20, 24 1, 2 0, 10−6, 10−5 0.1, 1, 10

Euler Equations, Double Shear Layer 16, 20, 24 32, 40, 48 1, 2 0, 10−6, 10−5 0.1, 1, 10

Table 1: Hyperparameter configurations employed in the ensemble training of PINNs.

3.4.2 Ensemble training

A PINN involves several hyperparameters, some of which are shown in Table 1. An user is always
confronted with the question of which parameter to choose. The theory, presented in this paper and in

16

Numerical approximation of the control via PINNs: the details

Step 2: Training dataset. A dataset T of scattered data is selected in the
interior domain Tint ⊂ QT and on the boundaries Tx=0 ⊂ {0} × (0,T),
Tt=0 ⊂ (0, 1)× {0}, Tt=T ⊂ (0, 1)× {T}. Thus, T = Tint ∪ Tx=0 ∪ Tt=0 ∪ Tt=T .
The number of selected points in Tint is denoted by Nint . Analogously, Nb is the
number of points on the boundary x = 0, and N0 and NT stand for the number
of points in Tt=0 and Tt=T , respectively.

Figure 2: An illustration of the training set S for the one-dimensional heat equation (3.1) with randomly chosen training
points. Points in Sint are depicted with blue dots and those in St b ∪ Ssb are depicted with black crosses.

that the cumulative generalization error (2.26) is very low to begin with and decays with the number of
boundary training points Ntb = Nsb. The effect of the number of interior training points seems to be
minimal in this case. Similarly, the computable upper bound (3.16) also decays with respect to increasing
the number of boundary training points. However, this upper bound does appear to be a significant
overestimate as it is almost three orders to magnitude greater than the actual generalization error. This
is not surprising as we had used non-sharp estimates such as triangle inequality and Grönwall’s inequality
rather indiscriminately while deriving (3.16). Moreover, obtaining sharp bounds on generalization errors
is a notoriously hard problem in machine learning [1,35] with overestimates of tens of orders of magnitude.
More importantly, both the computed generalization error and the upper bound follow the same decay
in the number of training samples. Surprisingly, the training errors (2.27) are slightly larger than the
computed generalization errors for this example. Note that this observation is still consistent with the
bound (3.16). Given the fact that the training error is defined in terms of residuals and the generalization
error is the error in approximating the solution of the underlying PDE by the PINN, there is no reason, a
priori, to expect that the generalization error should be greater than the training error.

K − 1 d q λreg λ

1D Heat Equation 2, 4, 8 12, 16, 20 1, 2 0, 10−6, 10−5, 10−4, 10−3 0.01, 0.1, 1, 10

ND Heat Equation 4 20 2 0, 10−6, 10−5 0.1, 1, 10

Burgers Equation 4, 8, 10 16, 20, 24 2 0, 10−6, 10−5 0.1, 1, 10

Euler Equations, Taylor Vortex 4, 8, 12 16, 20, 24 1, 2 0, 10−6, 10−5 0.1, 1, 10

Euler Equations, Double Shear Layer 16, 20, 24 32, 40, 48 1, 2 0, 10−6, 10−5 0.1, 1, 10

Table 1: Hyperparameter configurations employed in the ensemble training of PINNs.

3.4.2 Ensemble training

A PINN involves several hyperparameters, some of which are shown in Table 1. An user is always
confronted with the question of which parameter to choose. The theory, presented in this paper and in

16

Numerical approximation of the control via PINNs: the details

Step 3: Loss function.

It is composed of the following six terms:

Lint (θ; Tint) =
∑Nint

j=1 wj,int|ŷtt(x j ;θ)− c2ŷxx(x j ;θ)|2, x j ∈ Tint

Lx=0 (θ; Tx=0) =
∑Nb

j=1 wj,b|ŷ(x j ;θ)|2, x j ∈ Tx=0

Lpos
t=0 (θ; Tt=0) =

∑N0
j=1 wj,0|ŷ(x j ;θ)− y 0(x j)|2, x j ∈ Tt=0

Lvel
t=0 (θ; Tt=0) =

∑N0
j=1 wj,0|ŷt(x j ;θ)− y 1(x j)|2, x j ∈ Tt=0

Lpos
t=T (θ; Tt=T) =

∑NT
j=1 wj,T |ŷ(x j ;θ)|2, x j ∈ Tt=T

Lvel
t=T (θ; Tt=T) =

∑NT
j=1 wj,T |ŷt(x j ;θ)|2, x j ∈ Tt=T ,

Numerical approximation of the control via PINNs: the details

Step 3: Loss function. It is composed of the following six terms:

Lint (θ; Tint) =
∑Nint

j=1 wj,int|ŷtt(x j ;θ)− c2ŷxx(x j ;θ)|2, x j ∈ Tint

Lx=0 (θ; Tx=0) =
∑Nb

j=1 wj,b|ŷ(x j ;θ)|2, x j ∈ Tx=0

Lpos
t=0 (θ; Tt=0) =

∑N0
j=1 wj,0|ŷ(x j ;θ)− y 0(x j)|2, x j ∈ Tt=0

Lvel
t=0 (θ; Tt=0) =

∑N0
j=1 wj,0|ŷt(x j ;θ)− y 1(x j)|2, x j ∈ Tt=0

Lpos
t=T (θ; Tt=T) =

∑NT
j=1 wj,T |ŷ(x j ;θ)|2, x j ∈ Tt=T

Lvel
t=T (θ; Tt=T) =

∑NT
j=1 wj,T |ŷt(x j ;θ)|2, x j ∈ Tt=T ,

Numerical approximation of the control via PINNs: the details

Step 4: Training process. The final step at the PINN algorithm amounts to
minimize the loss function

L (θ; T) = Lint (θ; Tint)
+Lx=0 (θ; Tx=0)
+Lpos

t=0 (θ; Tt=0) + Lvel
t=0 (θ; Tt=0)

+Lpos
t=T (θ; Tt=T) + Lvel

t=T (θ; Tt=T) .

(5)

i.e., we compute
θ∗ = arg min

θ
L (θ; T) . (6)

The descent algorithm ADAM (Adaptive with Moment) is chosen for
numerical implementation. Automatic Differentation AD, which is included in
TensorFlow, is used for computation of gradients.
The approximation û(t;θ∗) of the control u(t) is then obtained as the
restriction of ŷ(x , t;θ∗) to the boundary x = 1, i.e.

û(t;θ∗) = ŷ(1, t;θ∗), 0 ≤ t ≤ T . (7)

Numerical approximation of the control via PINNs: the details

Step 4: Training process. The final step at the PINN algorithm amounts to
minimize the loss function

L (θ; T) = Lint (θ; Tint)
+Lx=0 (θ; Tx=0)
+Lpos

t=0 (θ; Tt=0) + Lvel
t=0 (θ; Tt=0)

+Lpos
t=T (θ; Tt=T) + Lvel

t=T (θ; Tt=T) .

(5)

i.e., we compute
θ∗ = arg min

θ
L (θ; T) . (6)

The descent algorithm ADAM (Adaptive with Moment) is chosen for
numerical implementation. Automatic Differentation AD, which is included in
TensorFlow, is used for computation of gradients.

The approximation û(t;θ∗) of the control u(t) is then obtained as the
restriction of ŷ(x , t;θ∗) to the boundary x = 1, i.e.

û(t;θ∗) = ŷ(1, t;θ∗), 0 ≤ t ≤ T . (7)

Numerical approximation of the control via PINNs: the details

Step 4: Training process. The final step at the PINN algorithm amounts to
minimize the loss function

L (θ; T) = Lint (θ; Tint)
+Lx=0 (θ; Tx=0)
+Lpos

t=0 (θ; Tt=0) + Lvel
t=0 (θ; Tt=0)

+Lpos
t=T (θ; Tt=T) + Lvel

t=T (θ; Tt=T) .

(5)

i.e., we compute
θ∗ = arg min

θ
L (θ; T) . (6)

The descent algorithm ADAM (Adaptive with Moment) is chosen for
numerical implementation. Automatic Differentation AD, which is included in
TensorFlow, is used for computation of gradients.
The approximation û(t;θ∗) of the control u(t) is then obtained as the
restriction of ŷ(x , t;θ∗) to the boundary x = 1, i.e.

û(t;θ∗) = ŷ(1, t;θ∗), 0 ≤ t ≤ T . (7)

Error estimates for generalization error

Generalization error for the control

Egener (u) := ‖u − û‖L2(0,T), (8)

where u = u(t) is the exact control of the continuous problem and
û = û (t;θ∗) is its numerical approximation via PINN algo.

Our goal is to get estimations for generalization error in terms of error
estimates for quadrature and the so-called training error.
Quadrature errors:

|f − f N | ≤ Cq(d)N−α, α > 0, (9)

where

f :=

∫
D
f (x) dx , f N :=

N∑
j=1

wj f (xj)

Training error: Etrain := L (θ∗; T)

Etrain, int = Lint (θ∗; Tint)
Etrain, boundary = Lx=0 (θ∗; Tx=0)
Etrain, initialpos = Lpos

t=0 (θ∗; Tt=0)
Etrain, initialvel = Lvel

t=0 (θ∗; Tt=0)
Etrain, finalpos = Lpos

t=T (θ∗; Tt=T)
Etrain, finalvel = Lvel

t=T (θ∗; Tt=T) .

(10)

Error estimates for generalization error

Generalization error for the control

Egener (u) := ‖u − û‖L2(0,T), (8)

where u = u(t) is the exact control of the continuous problem and
û = û (t;θ∗) is its numerical approximation via PINN algo.
Our goal is to get estimations for generalization error in terms of error
estimates for quadrature and the so-called training error.

Quadrature errors:

|f − f N | ≤ Cq(d)N−α, α > 0, (9)

where

f :=

∫
D
f (x) dx , f N :=

N∑
j=1

wj f (xj)

Training error: Etrain := L (θ∗; T)

Etrain, int = Lint (θ∗; Tint)
Etrain, boundary = Lx=0 (θ∗; Tx=0)
Etrain, initialpos = Lpos

t=0 (θ∗; Tt=0)
Etrain, initialvel = Lvel

t=0 (θ∗; Tt=0)
Etrain, finalpos = Lpos

t=T (θ∗; Tt=T)
Etrain, finalvel = Lvel

t=T (θ∗; Tt=T) .

(10)

Error estimates for generalization error

Generalization error for the control

Egener (u) := ‖u − û‖L2(0,T), (8)

where u = u(t) is the exact control of the continuous problem and
û = û (t;θ∗) is its numerical approximation via PINN algo.
Our goal is to get estimations for generalization error in terms of error
estimates for quadrature and the so-called training error.
Quadrature errors:

|f − f N | ≤ Cq(d)N−α, α > 0, (9)

where

f :=

∫
D
f (x) dx , f N :=

N∑
j=1

wj f (xj)

Training error: Etrain := L (θ∗; T)

Etrain, int = Lint (θ∗; Tint)
Etrain, boundary = Lx=0 (θ∗; Tx=0)
Etrain, initialpos = Lpos

t=0 (θ∗; Tt=0)
Etrain, initialvel = Lvel

t=0 (θ∗; Tt=0)
Etrain, finalpos = Lpos

t=T (θ∗; Tt=T)
Etrain, finalvel = Lvel

t=T (θ∗; Tt=T) .

(10)

Error estimates for generalization error

Generalization error for the control

Egener (u) := ‖u − û‖L2(0,T), (8)

where u = u(t) is the exact control of the continuous problem and
û = û (t;θ∗) is its numerical approximation via PINN algo.
Our goal is to get estimations for generalization error in terms of error
estimates for quadrature and the so-called training error.
Quadrature errors:

|f − f N | ≤ Cq(d)N−α, α > 0, (9)

where

f :=

∫
D
f (x) dx , f N :=

N∑
j=1

wj f (xj)

Training error: Etrain := L (θ∗; T)

Etrain, int = Lint (θ∗; Tint)
Etrain, boundary = Lx=0 (θ∗; Tx=0)
Etrain, initialpos = Lpos

t=0 (θ∗; Tt=0)
Etrain, initialvel = Lvel

t=0 (θ∗; Tt=0)
Etrain, finalpos = Lpos

t=T (θ∗; Tt=T)
Etrain, finalvel = Lvel

t=T (θ∗; Tt=T) .

(10)

Error estimates for generalization error

Theorem

Let y = y(x , t) ∈ C k
(
QT

)
, k ≥ 2, be the unique classical solution of (1)-(2)

and let ŷ = ŷ(x , t;θ∗) its PINN approximation. Let u = u(t) and û = û (t;θ∗)
be the exact control of the continuous system (1)-(2) and its PINN
approximation, respectively. Then, the following estimate for generalization
error holds

Egener (u) . Etrain, int + CN
−α/2
int

+Etrain, boundary + CN
−α/2
b

+Etrain, initialpos + CN
−α/2
0

+Etrain, initialvel + CN
−α/2
0

+Etrain, finalpos + CN
−α/2
T

+Etrain, finalvel + CN
−α/2
T

(11)

Main ingredients in the proof are observability inequalities and energy
estimates

Error estimates for generalization error

Theorem

Let y = y(x , t) ∈ C k
(
QT

)
, k ≥ 2, be the unique classical solution of (1)-(2)

and let ŷ = ŷ(x , t;θ∗) its PINN approximation. Let u = u(t) and û = û (t;θ∗)
be the exact control of the continuous system (1)-(2) and its PINN
approximation, respectively. Then, the following estimate for generalization
error holds

Egener (u) . Etrain, int + CN
−α/2
int

+Etrain, boundary + CN
−α/2
b

+Etrain, initialpos + CN
−α/2
0

+Etrain, initialvel + CN
−α/2
0

+Etrain, finalpos + CN
−α/2
T

+Etrain, finalvel + CN
−α/2
T

(11)

Main ingredients in the proof are observability inequalities and energy
estimates

Error estimates for generalization error

Lemma (E. Fernández-Cara and E. Zuazua)

Let T ≥ 2. Given initial and final conditions
(z0

0 , z
1
0), (z0

T , z
1
T) ∈ L2 (0, 1)× H−1 (0, 1), there exists a control function

v ∈ L2(0,T) such that the solution z(x , t) of the system
ztt = zxx , in QT

z(x , 0) = z0
0 (x), in (0, 1)

zt(x , 0) = z1
0 (x) in (0, 1)

z(0, t) = 0, z(1, t) = v(t) on (0,T)

(12)

satisfies
z(x ,T) = z0

T (x), zt(x ,T) = z1
T (x ,T), x ∈ (0, 1). (13)

Moreover,

‖v‖L2(0,T) ≤ C
(
‖z0

0‖L2(0,1) + ‖z1
0‖H−1(0,1) + ‖z0

T‖L2(0,1) + ‖z1
T‖H−1(0,1)

)
, (14)

for a positive constant C = C(T), which does not depend on the initial and
final data.

Error estimates for generalization error

Lemma

Consider the non-homogeneous system
ztt = zxx + f (x , t), in QT

z(x , 0) = z0
0 (x), in (0, 1)

zt(x , 0) = z1
0 (x) in (0, 1)

z(0, t) = g0(t), z(1, t) = g1(t) on (0,T)

Then, there exists a positive constant C such that

‖z‖C(0,T ;L2(0,1)) + ‖zt‖C(0,T ;H−1(0,1))

≤ C
(
‖z0

0‖L2(0,1) + ‖z1
0‖H−1(0,1) + ‖g0‖L2(0,T) + ‖g1‖L2(0,T) + ‖f ‖L2(0,T ;L2(0,1))

)

Error estimates for generalization error

Proof of theorem on generalization error.

Let y = y − ŷ and u = u − û be the error in the state and control variables,
respectively.By linearity, y solves

y tt − y xx = ŷtt − ŷxx , in QT

y(x , 0) = y 0(x)− ŷ(x , 0), in (0, 1)
y t(x , 0) = y 1(x)− ŷt(x , 0) in (0, 1)
y(x ,T) = ŷ(x ,T), in (0, 1)
y t(x ,T) = ŷt(x ,T) in (0, 1)
y(0, t) = ŷ(0, t), y(1, t) = u(t)− ŷ(1, t) on (0,T).

(15)

y(x , t;θ) is decomposed as y = y 1 + y 2, where
y 1
tt − y 1

xx = 0, in QT

y 1(x , 0) = y 0(x)− ŷ(x , 0), in (0, 1)
y 1
t (x , 0) = y 1(x)− ŷt(x , 0) in (0, 1)

y 1(0, t) = 0, y 1(1, t) = u(t)− ŷ(1, t) on (0,T).

(16)


y 2
tt − y 2

xx = ŷtt − ŷxx , in QT

y 2(x , 0) = 0, y 2
t (x , 0) = 0 in (0, 1)

y 2(x ,T) = ŷ(x ,T)− y 1(x ,T), in (0, 1)
y 2
t (x ,T) = ŷt(x ,T)− y 1

t (x ,T), in (0, 1)
y 2(0, t) = ŷ(0, t), y 2(1, t) = 0 on (0,T).

(17)

Error estimates for generalization error

Proof of theorem on generalization error.
Let y = y − ŷ and u = u − û be the error in the state and control variables,
respectively.

By linearity, y solves

y tt − y xx = ŷtt − ŷxx , in QT

y(x , 0) = y 0(x)− ŷ(x , 0), in (0, 1)
y t(x , 0) = y 1(x)− ŷt(x , 0) in (0, 1)
y(x ,T) = ŷ(x ,T), in (0, 1)
y t(x ,T) = ŷt(x ,T) in (0, 1)
y(0, t) = ŷ(0, t), y(1, t) = u(t)− ŷ(1, t) on (0,T).

(15)

y(x , t;θ) is decomposed as y = y 1 + y 2, where
y 1
tt − y 1

xx = 0, in QT

y 1(x , 0) = y 0(x)− ŷ(x , 0), in (0, 1)
y 1
t (x , 0) = y 1(x)− ŷt(x , 0) in (0, 1)

y 1(0, t) = 0, y 1(1, t) = u(t)− ŷ(1, t) on (0,T).

(16)


y 2
tt − y 2

xx = ŷtt − ŷxx , in QT

y 2(x , 0) = 0, y 2
t (x , 0) = 0 in (0, 1)

y 2(x ,T) = ŷ(x ,T)− y 1(x ,T), in (0, 1)
y 2
t (x ,T) = ŷt(x ,T)− y 1

t (x ,T), in (0, 1)
y 2(0, t) = ŷ(0, t), y 2(1, t) = 0 on (0,T).

(17)

Error estimates for generalization error

Proof of theorem on generalization error.
Let y = y − ŷ and u = u − û be the error in the state and control variables,
respectively.By linearity, y solves

y tt − y xx = ŷtt − ŷxx , in QT

y(x , 0) = y 0(x)− ŷ(x , 0), in (0, 1)
y t(x , 0) = y 1(x)− ŷt(x , 0) in (0, 1)
y(x ,T) = ŷ(x ,T), in (0, 1)
y t(x ,T) = ŷt(x ,T) in (0, 1)
y(0, t) = ŷ(0, t), y(1, t) = u(t)− ŷ(1, t) on (0,T).

(15)

y(x , t;θ) is decomposed as y = y 1 + y 2, where
y 1
tt − y 1

xx = 0, in QT

y 1(x , 0) = y 0(x)− ŷ(x , 0), in (0, 1)
y 1
t (x , 0) = y 1(x)− ŷt(x , 0) in (0, 1)

y 1(0, t) = 0, y 1(1, t) = u(t)− ŷ(1, t) on (0,T).

(16)


y 2
tt − y 2

xx = ŷtt − ŷxx , in QT

y 2(x , 0) = 0, y 2
t (x , 0) = 0 in (0, 1)

y 2(x ,T) = ŷ(x ,T)− y 1(x ,T), in (0, 1)
y 2
t (x ,T) = ŷt(x ,T)− y 1

t (x ,T), in (0, 1)
y 2(0, t) = ŷ(0, t), y 2(1, t) = 0 on (0,T).

(17)

Error estimates for generalization error

Proof of theorem on generalization error.
Let y = y − ŷ and u = u − û be the error in the state and control variables,
respectively.By linearity, y solves

y tt − y xx = ŷtt − ŷxx , in QT

y(x , 0) = y 0(x)− ŷ(x , 0), in (0, 1)
y t(x , 0) = y 1(x)− ŷt(x , 0) in (0, 1)
y(x ,T) = ŷ(x ,T), in (0, 1)
y t(x ,T) = ŷt(x ,T) in (0, 1)
y(0, t) = ŷ(0, t), y(1, t) = u(t)− ŷ(1, t) on (0,T).

(15)

y(x , t;θ) is decomposed as y = y 1 + y 2, where
y 1
tt − y 1

xx = 0, in QT

y 1(x , 0) = y 0(x)− ŷ(x , 0), in (0, 1)
y 1
t (x , 0) = y 1(x)− ŷt(x , 0) in (0, 1)

y 1(0, t) = 0, y 1(1, t) = u(t)− ŷ(1, t) on (0,T).

(16)


y 2
tt − y 2

xx = ŷtt − ŷxx , in QT

y 2(x , 0) = 0, y 2
t (x , 0) = 0 in (0, 1)

y 2(x ,T) = ŷ(x ,T)− y 1(x ,T), in (0, 1)
y 2
t (x ,T) = ŷt(x ,T)− y 1

t (x ,T), in (0, 1)
y 2(0, t) = ŷ(0, t), y 2(1, t) = 0 on (0,T).

(17)

Error estimates for generalization error

Proof of theorem on generalization error.

By applying the observability inequality to system (16) and the energy estimate
to (17),

‖u − û‖L2(0,T)

. ‖y 0 − ŷ(·, 0)‖L2(0,1) + ‖y 1 − ŷt(·, 0)‖H−1(0,1) + ‖y 1(·,T)‖L2(0,1) + ‖y 1
t (·,T)‖H−1(0,1)

. ‖y 0 − ŷ(·, 0)‖L2(0,1) + ‖y 1 − ŷt(·, 0)‖L2(0,1) + ‖ŷ(·,T)‖L2(0,1) + ‖ŷt(·,T)‖L2(0,1)

+‖y 2(·,T)‖L2(0,1) + ‖y 2
t (·,T)‖H−1(0,1)

. ‖y 0 − ŷ(·, 0)‖L2(0,1) + ‖y 1 − ŷt(·, 0)‖L2(0,1) + ‖ŷ(·,T)‖L2(0,1) + ‖ŷt(·,T)‖L2(0,1)

+‖ŷ (0, ·) ‖L2(0,T) + ‖ŷtt − ŷxx‖L2(0,T ;L2(0,1).
(18)

The result then follows by applying estimates error for quadrature (9).

Error estimates for generalization error

Proof of theorem on generalization error.

By applying the observability inequality to system (16) and the energy estimate
to (17),

‖u − û‖L2(0,T)

. ‖y 0 − ŷ(·, 0)‖L2(0,1) + ‖y 1 − ŷt(·, 0)‖H−1(0,1) + ‖y 1(·,T)‖L2(0,1) + ‖y 1
t (·,T)‖H−1(0,1)

. ‖y 0 − ŷ(·, 0)‖L2(0,1) + ‖y 1 − ŷt(·, 0)‖L2(0,1) + ‖ŷ(·,T)‖L2(0,1) + ‖ŷt(·,T)‖L2(0,1)

+‖y 2(·,T)‖L2(0,1) + ‖y 2
t (·,T)‖H−1(0,1)

. ‖y 0 − ŷ(·, 0)‖L2(0,1) + ‖y 1 − ŷt(·, 0)‖L2(0,1) + ‖ŷ(·,T)‖L2(0,1) + ‖ŷt(·,T)‖L2(0,1)

+‖ŷ (0, ·) ‖L2(0,T) + ‖ŷtt − ŷxx‖L2(0,T ;L2(0,1).
(18)

The result then follows by applying estimates error for quadrature (9).

Error estimates for generalization error

Proof of theorem on generalization error.

By applying the observability inequality to system (16) and the energy estimate
to (17),

‖u − û‖L2(0,T)

. ‖y 0 − ŷ(·, 0)‖L2(0,1) + ‖y 1 − ŷt(·, 0)‖H−1(0,1) + ‖y 1(·,T)‖L2(0,1) + ‖y 1
t (·,T)‖H−1(0,1)

. ‖y 0 − ŷ(·, 0)‖L2(0,1) + ‖y 1 − ŷt(·, 0)‖L2(0,1) + ‖ŷ(·,T)‖L2(0,1) + ‖ŷt(·,T)‖L2(0,1)

+‖y 2(·,T)‖L2(0,1) + ‖y 2
t (·,T)‖H−1(0,1)

. ‖y 0 − ŷ(·, 0)‖L2(0,1) + ‖y 1 − ŷt(·, 0)‖L2(0,1) + ‖ŷ(·,T)‖L2(0,1) + ‖ŷt(·,T)‖L2(0,1)

+‖ŷ (0, ·) ‖L2(0,T) + ‖ŷtt − ŷxx‖L2(0,T ;L2(0,1).
(18)

The result then follows by applying estimates error for quadrature (9).

A numerical experiment (preliminary results)


ytt = yxx , in (0, 1)× (0, 2)
y(x , 0) = sin (πx) , in (0, 1)
yt(x , 0) = 0 in (0, 1)
y(0, t) = 0, y(1, t) = u(t) on (0, 2)
y(x , 2) = yt(x , 2) = 0 in (0, 1)

Numerical implentation via DeepXDE Python library

Multilayer perceptron with 4 hidden layers and 50 neurons in each layer

Activation function: tanh

Dataset for training: Sobol

Optimizer: ADAM + L-BFGS-B

Initializer: Glorot uniform

Table: Summary of results for training errors and for 500 interior points and 50
boundary points.

‖ŷtt − ŷxx‖ ‖ŷ (0, ·) ‖ ‖y 0 − ŷ(·, 0)‖ ‖y 1 − ŷt(·, 0)‖ ‖ŷ(·,T)‖ ‖ŷt(·,T)‖

8.8× 10−6 2.1× 10−6 1.1× 10−6 5.7× 10−9 3.4× 10−8 7.3× 10−8

A numerical experiment (preliminary results)


ytt = yxx , in (0, 1)× (0, 2)
y(x , 0) = sin (πx) , in (0, 1)
yt(x , 0) = 0 in (0, 1)
y(0, t) = 0, y(1, t) = u(t) on (0, 2)
y(x , 2) = yt(x , 2) = 0 in (0, 1)

Numerical implentation via DeepXDE Python library

Multilayer perceptron with 4 hidden layers and 50 neurons in each layer

Activation function: tanh

Dataset for training: Sobol

Optimizer: ADAM + L-BFGS-B

Initializer: Glorot uniform

Table: Summary of results for training errors and for 500 interior points and 50
boundary points.

‖ŷtt − ŷxx‖ ‖ŷ (0, ·) ‖ ‖y 0 − ŷ(·, 0)‖ ‖y 1 − ŷt(·, 0)‖ ‖ŷ(·,T)‖ ‖ŷt(·,T)‖

8.8× 10−6 2.1× 10−6 1.1× 10−6 5.7× 10−9 3.4× 10−8 7.3× 10−8

A numerical experiment (preliminary results)


ytt = yxx , in (0, 1)× (0, 2)
y(x , 0) = sin (πx) , in (0, 1)
yt(x , 0) = 0 in (0, 1)
y(0, t) = 0, y(1, t) = u(t) on (0, 2)
y(x , 2) = yt(x , 2) = 0 in (0, 1)

Numerical implentation via DeepXDE Python library

Multilayer perceptron with 4 hidden layers and 50 neurons in each layer

Activation function: tanh

Dataset for training: Sobol

Optimizer: ADAM + L-BFGS-B

Initializer: Glorot uniform

Table: Summary of results for training errors and for 500 interior points and 50
boundary points.

‖ŷtt − ŷxx‖ ‖ŷ (0, ·) ‖ ‖y 0 − ŷ(·, 0)‖ ‖y 1 − ŷt(·, 0)‖ ‖ŷ(·,T)‖ ‖ŷt(·,T)‖

8.8× 10−6 2.1× 10−6 1.1× 10−6 5.7× 10−9 3.4× 10−8 7.3× 10−8

A numerical experiment (preliminary results)

Figure: Predicted solution.

Scope of the proposed methodology

The same approach applies to many other controllability problems for
PDEs both linear and nonlinear.

The method may be adapted to averaged control of parametric PDEs
where the number of parameters may be large.

A challenging and high dimensional problem is to design a ML algorithm
to approximate the initial data to control mapping(

u0, u1
)
7→ u(t)

.......... Muchas gracias

Scope of the proposed methodology

The same approach applies to many other controllability problems for
PDEs both linear and nonlinear.

The method may be adapted to averaged control of parametric PDEs
where the number of parameters may be large.

A challenging and high dimensional problem is to design a ML algorithm
to approximate the initial data to control mapping(

u0, u1
)
7→ u(t)

.......... Muchas gracias

Scope of the proposed methodology

The same approach applies to many other controllability problems for
PDEs both linear and nonlinear.

The method may be adapted to averaged control of parametric PDEs
where the number of parameters may be large.

A challenging and high dimensional problem is to design a ML algorithm
to approximate the initial data to control mapping(

u0, u1
)
7→ u(t)

.......... Muchas gracias

Scope of the proposed methodology

The same approach applies to many other controllability problems for
PDEs both linear and nonlinear.

The method may be adapted to averaged control of parametric PDEs
where the number of parameters may be large.

A challenging and high dimensional problem is to design a ML algorithm
to approximate the initial data to control mapping(

u0, u1
)
7→ u(t)

.......... Muchas gracias

	Supervised Learning
	Set up

