A new interior-point optimization approach for support vector machines for binary classification and outlier detection

Jordi Castro

detection

Jordi Castro

Group of Mathematical Optimization

artment of Statistics and Operations Rese

Institute of Mathematics UPC – IMTech

rsitat Politècnica de Catalunya – Barcelon

Barcelona, Catalonia

jes between M Group of Mathematical Optimization Department of Statistics and Operations Research Institute of Mathematics UPC – IMTech Universitat Politècnica de Catalunya – BarcelonaTech Barcelona, Catalonia

New Bridges between Mathematics and Data Science 8–11 November 2021, Valladolid, Spain

Supported by MCIN/AEI/FEDER RTI2018-097580-B-I00

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM 1 1 / 25

Outline

class Support Vector Machine (9
Just under and large-scale problems
Single SVM problem using real-world
Single SVM problem using same real-1 The 2-class and 1-class Support Vector Machine (SVM) problem

2 IPM for block-structured and large-scale problems

3 Results with 2-class SVM problem using real-world instances

4 Results with 1-class SVM problem using same real-world instances

2-class SVM or Support Vector Classifier (SVC)

- **•** Binary supervised classification technique. Useful for text classification.
- Purpose: to find two parallel hyperplanes separating two classes such that we both minimize the classification error and maximize the margin between the two separating hyperplanes:

- p points of d features: $x_i \in \mathbb{R}^d$ $i = 1, \ldots, p$.
- Labels $y_i \in \{+1, -1\}$ $i = 1, \ldots, p$: class of point *i*.

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM 4 / 25

The 2-class and 1-class Support Vector Machine (SVM) problem

Modelling 2-class SVMs

Find hyperplane $(w, \gamma) \in \mathbb{R}^d \times \mathbb{R}$ maximizing separation margin between half-spaces $w^\top x + \gamma \geq +1$ and $w^\top x + \gamma \geq -1$, and minimizing misclassification. These two opposite objectives are weighted by parameter $v \in \mathbb{R}^+$.

We consider artificial variables $s_i \geq 0$, $i = 1, \ldots, p$, one for each point, to account for misclassification errors. The resulting constraints are:

 $y_i(w^\top x_i + \gamma) + s_i \ge 1 \quad i = 1, \ldots, p$

2-class SVM as a quadratic optimization problem

Primal formulation: QO problem in variables w, γ, s

$$
\begin{array}{ll}\n\text{min} & \frac{1}{2} w^{\top} w + v e^{\top} s \\
& \text{s. to} & Y(Aw + \gamma e) + s \ge e \quad [\lambda \in \mathbb{R}^p] \\
& \text{s} \ge 0 \qquad [\mu \in \mathbb{R}^p] \\
(y_1, \ldots, y_p) \text{ and } A = [x_1 x_2 \ldots x_p]^{\top} \text{ stores rowwise} \\
\text{n of 2-class SVM: QO problem in variables } \lambda \\
& \text{max} & \lambda^{\top} e - \frac{1}{2} \lambda^{\top} Y A A^{\top} Y \lambda \\
& \lambda^{\top} Y e = 0 \\
& 0 \le \lambda \le v e\n\end{array}
$$

where $Y=diag(y_1,\ldots,y_p)$ and $A=[x_1x_2\ldots x_p]^\top$ stores rowwise vectors $x_i\in\mathbb{R}^d$.

Dual formulation of 2-class SVM: QO problem in variables λ

$$
\begin{array}{ll}\n\max_{\lambda \in \mathbb{R}^p} & \lambda^\top e - \frac{1}{2} \lambda^\top Y A A^\top Y \lambda \\
& \lambda^\top Y e = 0 \\
& 0 \leq \lambda \leq v e\n\end{array}
$$

Computationally expensive for interior-point solvers

- \bullet Systems with AA^{\top} to be solved in either primal or dual formulation.
- \bullet AA^T might be almost dense, of size p and rank min $\{p,d\}$.

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM 6 / 25

The 2-class and 1-class Support Vector Machine (SVM) problem

1-class SVM for Outlier Detection

Purpose of 1-class SVM

- Find hyperplane separating outliers from the rest of points, with maximum margin wrt. the origin.
- **•** [Parameter](#page-1-0) V is an upper bound on fraction of detected outliers (Schölkopf, Platt, Shawe-Taylor, Smola, Neural Computation 2001) (Chou, Lin, Lin, SIAM Conf. Data Mining, 2020).

Primal formulation of 1-class SVM

Figin.

upper bound on fraction of detecte

I Computation 2001) (Chou, Lin, Lin, SIAM Conf. Data

.-class SVM

min $\frac{1}{2}w^Tw - \gamma + \frac{1}{vp}e^Ts$

s. to $Aw - \gamma e + s \ge 0$ [λ ($s \ge 0$ [μ (sate) min $(w, \gamma, s) \in \mathbb{R}^{d+1+p}$ 1 $\frac{1}{2}$ w \top w γ $+$ $\frac{1}{\nu \mu}$ $\frac{1}{\nu \rho} e^{\top} s$ s. to $Aw - \gamma e + s \ge 0$ $[\lambda \in \mathbb{R}^p]$ $s \geq 0$ $\left[\mu \in \mathbb{R}^p\right]$

Dual formulation of 1-class SVM

$$
\begin{array}{ll}\n\max_{\lambda \in \mathbb{R}^p} & -\frac{1}{2} \lambda^\top A A^\top \lambda \\
& \lambda^\top e = 1 \\
& 0 \le \lambda \le \frac{1}{\nu \rho} e\n\end{array}
$$

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM 7 / 25

Computationally expensive for interior-point solvers

Most efficient IPM approaches for (only) 2-class SVM

Standard dual of 2-class SVM

$$
\begin{array}{ll}\n\mathsf{max} & \lambda^{\top} e - \frac{1}{2} \lambda^{\top} \mathsf{Y} A A^{\top} \mathsf{Y} \lambda \\
\lambda^{\top} \mathsf{Y} e = 0 \\
0 \leq \lambda \leq v\n\end{array}
$$

Efficient IPMs devised when number of features is small: $d \ll p$.

Ferris, Mundson, SIOPT 2003

- Low-rank updates by Sherman-Morrison-Woodbury for Newton directions.
- Solved random data with millions of points but only 34 features.

$\lambda^T Ye = 0$	$0 \le \lambda \le v$
Efficient IPMs devised when number of features is small: $d \ll p$.	
Ferris, Mundson, SIOPT 2003	
0 Low-rank updates by Sherman-Morrison-Woodbury for Newton directions.	
0 Solved random data with millions of points but only 34 features.	
Gondzio, Woodsend, COAP 2011: SVM-OOPS	
0 Separable reformulation defining extra variables	$\begin{array}{c}\n m\alpha x \\ \lambda^T e = \frac{1}{2} u^T u \\ u \alpha f \text{ dimension number of features:}\n \end{array}$ \n
0 SVM-OOPS applied to real-world instances.	$A^T Y \lambda = u$
Jordi Castro (UPC-Barcelona Tech)	IPM for 2-class and 1-class SVM

The 2-class and 1-class Support Vector Machine (SVM) problem

Best SVM packages in machine learning community

LIBSVM for linear/nonlinear kernels (Chang, Lin, ACM TIST, 2011)

- Solves the dual of 2-class and 1-class SVM formulation.
- Uses the SMO algorithm, specific for dual SVM problems.

LIBLINEAR for linear kernels (Fan et al., JMLR, 2008)

For 2-class SVM it transforms the problem to a "similar" unconstrained one without γ : It either solves the primal

2-class and 1-class SVW formulation.
forithm, specific for dual SVM problems.
cernels (Fan et al., JMLR, 2008)
it transforms the problem to a "similar"
er solves the primal

$$
\min_{w} \frac{1}{2} w^{\top} w + v \sum_{i=1}^{p} max(0, 1 - y_i w^{\top} x_i)^2
$$

$$
\max_{w} \lambda^{\top} e - \frac{1}{2} \lambda^{\top} YAA^{\top} Y\lambda
$$

or the dual

$$
\max_{\lambda} \quad \lambda^{\top} e - \frac{1}{2} \lambda^{\top} Y A A^{\top} Y \lambda
$$

$$
0 \leq \lambda \leq v
$$

using a trust-region CG Newton method or a coordinate descent algorithm. For 1-class SVM it solves the dual including the (removed) linear constraint.

Our new proposal: solve a set of linked smaller SVMs

Use multiple variable splitting:

- $\textbf{1}$ Partition the dataset $A \in \mathbb{R}^{p \times d}$ in k subsets $A^i \in \mathbb{R}^{p_i \times d}, i = 1, \ldots, k.$
- \bullet Consider k smaller SVMs, each with its own $(w^i, \gamma^i, s^i), i = 1, \ldots, k$ variables.
- $\bullet\hspace{0.1cm}$ Link problems through constraints (w^i, γ^i) $=$ $(w^{i+1}, \gamma^{i+1}).$

Complexity of Cholesky factorizations:

- of AA^{\top} is $O(p^3)$.
- set $A \in \mathbb{R}^{p \times a}$ in k subsets $A' \in \mathbb{R}^{p \times p}$
r SVMs, each with its own (w^i, γ^i, s)
ough constraints $(w^i, \gamma^i) = (w^{i+1}, \gamma^i)$
factorizations:
 $, \ldots, k: O\left(k \left(\frac{p}{k}\right)^3\right) = O\left(\frac{p^3}{k^2}\right)$
rmulation with multip of $A^i {A^i}^\top$ for $i=1,\ldots,k\colon\,O\left(k\left(\frac{p}{k}\right)\right)$ $\left(\frac{p}{k}\right)^3$ = $O\left(\frac{p^3}{k^2}\right)$ $\frac{p^3}{k^2}$

New primal SVM formulation with multiple variable splitting:

IPM for 2-class and 1-class SVM $10/25$

IPM for block-structured and large-scale problems

Specialized IPM for block-structured problems with linking constraints

- mproved along several papers: E
17, MP 2017, OM&S 2016, EJC
nOR 2004, SIOPT 2000.
the BlockIP solver (C++, \approx 190
oination of Cholesky and PCG fo
I to the new SVM formulation. [Developed](#page-1-0) [an](#page-1-0)d improved along several papers: EJOR 2021, OM&S 2021, SIOPT 2017, MP 2017, OM&S 2016, EJOR 2013, MP 2011, COAP 2007, AnnOR 2004, SIOPT 2000.
	- Implemented in the BlockIP solver $(C++, \approx 19000$ lines of code)
	- Relies on a combination of Cholesky and PCG for computing directions.
	- It can be applied to the new SVM formulation.

Formulation of structured problems with linking constraints

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM 13 / 25

IPM for block-structured and large-scale problems

Solving normal equations by exploiting structure

The preconditioner

Based on P-regular splitting $S = D - (C^{\top}B^{-1}C)$ (SIOPT00,COAP07) Spectral radius of $D^{-1}(C^\top B^{-1}C))$ satisfies $\rho(D^{-1}(C^\top B^{-1}C)))$ $<$ 1 and then

$$
C^{\top}B^{-1}C
$$
) satisfies $\rho(D^{-1}(C^{\top}B^{-1}C))) < 1$ and t
\n
$$
(D - C^{\top}B^{-1}C)^{-1} = \left(\sum_{i=0}^{\infty} (D^{-1}(C^{\top}B^{-1}C))^i\right)D^{-1}
$$
\nobtained truncating the power series at t
\n
$$
M^{-1} = D^{-1} \qquad \text{if } h = 0,
$$
\n
$$
M^{-1} = (I + D^{-1}(C^{\top}B^{-1}C))D^{-1} \qquad \text{if } h = 1.
$$

Preconditioner M^{-1} obtained truncating the power series at term h

$$
M^{-1} = D^{-1} \text{ if } h = 0,
$$

\n
$$
M^{-1} = (I + D^{-1}(C^{T}B^{-1}C))D^{-1} \text{ if } h = 1.
$$

Quality of preconditioner depends on

- ρ \ge 1: the farther from 1, the better the preconditioner.
- \bullet Factorization of D: the easier and sparser, the better.

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM 15 / 25

IPM for block-structured and large-scale problems

Exploit structure of linking constraints $x^{i} - x^{i+1} = 0$ For instance for $k = 4$ blocks:

$$
[L_1 L_2 L_3 L_4] = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}
$$

Then:

$$
[L_1 L_2 L_3 L_4] = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}
$$

$$
D = \Theta_0 + \sum_{i=1}^{k} L_i \Theta_i L_i^{\top} = \Theta_0 + \begin{bmatrix} \Theta_1^x + \Theta_2^x & -\Theta_2^x & 0 \\ -\Theta_2^x & \Theta_2^x + \Theta_3^x & -\Theta_3^x \\ 0 & -\Theta_3^x & \Theta_3^x + \Theta_4^x \end{bmatrix}
$$

rties of *D*

Properties of D

- \bullet D is a shifted tri-diagonal matrix.
- Very sparse, efficient to factorize: good preconditioner.
- Specific routines can be developed for its factorization.

Sizes of real-world 2-class SVM instances

† Only used for SVM-BlockIP and CPLEX-20.1 models

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM 18 / 25

Results with 2-class SVM problem using real-world instances

CPU time with interior-point approaches

 $\frac{1}{k}$ k > 1 blocks used

CPU time with LIBSVM and LIBLINEAR(dual)

† Solves different problem, without γ

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM 20 / 25

Results with 2-class SVM problem using real-world instances

Classification accuracy of SVM-BlockIP and LIBLINEAR

Similar accuracies for both codes, and, excluding 4 instances, always $\geq 80\%$

CPU time with all available packages

† Poor solutions provided (see next slide)

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM 23 / 25 23 / 25

Results with 1-class SVM problem using same real-world instances

1-class SVM accuracy of SVM-BlockIP and LIBLINEAR

SVM-BlockIP always provides better solutions

Conclusions

BlockIP and SVMs by multiple variable splitting

- BlockIP competitive with state-of-the-art solvers for SVMs.
- It could solve new SVM models whose duals involve linear constraints.

Further applications (other than SVMs) in Data Science

Any constrained problem which allows multiple variable splitting.

by multiple variable splitting
itive with state-of-the-art solvers
w SVM models whose duals invo
(other than SVMs) in Data S
problem which allows multiple v **Thanks for your attention**

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM 25 / 25 / 25 / 25