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The 2-class and 1-class Support Vector Machine (SVM) problem

2-class SVM or Support Vector Classifier (SVC)

Binary supervised classification technique. Useful for text classification.

Purpose: to find two parallel hyperplanes separating two classes such that
we both minimize the classification error and maximize the margin between
the two separating hyperplanes:

Bad classification Good classification

Parameters of the problem

p points of d features: xi ∈ Rd i = 1, . . . ,p.
Labels yi ∈ {+1,−1} i = 1, . . . ,p: class of point i .
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The 2-class and 1-class Support Vector Machine (SVM) problem

Modelling 2-class SVMs
Find hyperplane (w ,γ) ∈ Rd ×R maximizing separation margin between
half-spaces w>x + γ ≥+1 and w>x + γ ≥−1, and minimizing misclassification.
These two opposite objectives are weighted by parameter ν ∈ R+.

x’ w +    = 0 γ

x’ w + γ = −1

x’ w + γ = +1
+1 class

−1 class

separation hyperplane

margin= 2/||w||
2

badly classified

badly classified

We consider artificial variables si ≥ 0, i = 1, . . . ,p, one for each point, to account
for misclassification errors. The resulting constraints are:

yi (w>xi + γ) + si ≥ 1 i = 1, . . . ,p
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The 2-class and 1-class Support Vector Machine (SVM) problem

2-class SVM as a quadratic optimization problem
Primal formulation: QO problem in variables w ,γ,s

min
(w ,γ,s)∈Rd+1+p

1
2 w>w + νe>s

s. to Y (Aw + γe) + s ≥ e [λ ∈ Rp]
s ≥ 0 [µ ∈ Rp]

where Y = diag(y1, . . . ,yp) and A = [x1x2 . . .xp]> stores rowwise vectors xi ∈ Rd .

Dual formulation of 2-class SVM: QO problem in variables λ

max
λ∈Rp

λ>e− 1
2 λ>YAA>Y λ

λ>Y e = 0
0≤ λ ≤ νe

Computationally expensive for interior-point solvers

Systems with AA> to be solved in either primal or dual formulation.

AA> might be almost dense, of size p and rank min{p,d}.
Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM 6 / 25

jor
di.c

ast
ro@

upc
.ed

u

The 2-class and 1-class Support Vector Machine (SVM) problem

1-class SVM for Outlier Detection
Purpose of 1-class SVM

Find hyperplane separating outliers from the rest of points, with maximum
margin wrt. the origin.

Parameter ν is an upper bound on fraction of detected outliers (Schölkopf, Platt,

Shawe-Taylor, Smola, Neural Computation 2001) (Chou, Lin, Lin, SIAM Conf. Data Mining, 2020).

Primal formulation of 1-class SVM

min
(w ,γ,s)∈Rd+1+p

1
2 w>w − γ + 1

νp e>s

s. to Aw − γe + s ≥ 0 [λ ∈ Rp]
s ≥ 0 [µ ∈ Rp]

Dual formulation of 1-class SVM

max
λ∈Rp

− 1
2 λ>AA>λ

λ>e = 1
0≤ λ ≤ 1

νp e

Computationally expensive for interior-point solvers
Systems with AA> to be solved in either primal or dual formulation.

AA> might be almost dense, of size p and rank min{m,n}.
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The 2-class and 1-class Support Vector Machine (SVM) problem

Most efficient IPM approaches for (only) 2-class SVM
Standard dual of 2-class SVM

max
λ

λ>e− 1
2 λ>YAA>Y λ

λ>Ye = 0
0≤ λ ≤ ν

Efficient IPMs devised when number of features is small: d � p .

Ferris, Mundson, SIOPT 2003

Low-rank updates by Sherman-Morrison-Woodbury for Newton directions.
Solved random data with millions of points but only 34 features.

Gondzio, Woodsend, COAP 2011: SVM-OOPS

Separable reformulation defining extra variables
u of dimension number of features:

SVM-OOPS applied to real-world instances.

max
λ

λ>e− 1
2 u>u

λ>Ye = 0
A>Y λ = u
0≤ λ ≤ ν , u free
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The 2-class and 1-class Support Vector Machine (SVM) problem

Best SVM packages in machine learning community
LIBSVM for linear/nonlinear kernels (Chang, Lin, ACM TIST, 2011)

Solves the dual of 2-class and 1-class SVM formulation.
Uses the SMO algorithm, specific for dual SVM problems.

LIBLINEAR for linear kernels (Fan et al., JMLR, 2008)

For 2-class SVM it transforms the problem to a “similar” unconstrained one
without γ: It either solves the primal

min
w

1
2w>w + ν

p

∑
i=1

max(0,1−yiw>xi )2

or the dual
max

λ

λ>e− 1
2 λ>YAA>Y λ

0≤ λ ≤ ν

using a trust-region CG Newton method or a coordinate descent algorithm.
For 1-class SVM it solves the dual including the (removed) linear constraint.
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The 2-class and 1-class Support Vector Machine (SVM) problem

Our new proposal: solve a set of linked smaller SVMs
Use multiple variable splitting:

1 Partition the dataset A ∈ Rp×d in k subsets Ai ∈ Rpi×d , i = 1, . . . ,k.
2 Consider k smaller SVMs, each with its own (w i ,γ i ,s i ), i = 1, . . . ,k variables.
3 Link problems through constraints (w i ,γ i ) = (w i+1,γ i+1).

Complexity of Cholesky factorizations:

of AA> is O(p3).

of AiAi> for i = 1, . . . ,k: O
(

k
(p

k
)3
)

= O
(

p3

k2

)
.

New primal SVM formulation with multiple variable splitting:

min
(w i ,γ i ,s i ) i=1,...,k

1
2

(
∑

k
i=1 w i>w i

)
/k + ν ∑

k
i=1 ∑

pi
j=1 s i

j

s. to Y i (Aiw i + γ ie) + s i ≥ e i = 1, . . . ,k
s i ≥ 0 i = 1, . . . ,k
w i = w i+1, γ i = γ i+1 i = 1, . . . ,k−1
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IPM for block-structured and large-scale problems

Specialized IPM for block-structured problems with linking
constraints

Developed and improved along several papers: EJOR 2021, OM&S
2021, SIOPT 2017, MP 2017, OM&S 2016, EJOR 2013, MP 2011,
COAP 2007, AnnOR 2004, SIOPT 2000.
Implemented in the BlockIP solver (C++, ≈ 19000 lines of code)
Relies on a combination of Cholesky and PCG for computing
directions.
It can be applied to the new SVM formulation.
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IPM for block-structured and large-scale problems

Formulation of structured problems with linking constraints

For convex separable problems (fi convex separable)

min
k
∑
i=0

fi (x i )

subject to


N1

. . .
Nk

L1 . . . Lk I




x1

...
xk

x0

=


b1

...
bk

b0


0≤ x i ≤ ui i = 0, . . . ,k.

In the SVM problem, function is convex quadratic

fi (x i ) = c i>x i + 1
2 x i>Qix i , Qi � 0 diagonal

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM 13 / 25

jor
di.c

ast
ro@

upc
.ed

u

IPM for block-structured and large-scale problems

Solving normal equations by exploiting structure
Exploiting structure of A and Θ

A =


N1

. . .
Nk

L1 . . . Lk I

 Θ =


Θ1

. . .
Θk

Θ0



AΘA> =



N1Θ1N>1 N1Θ1L>1
. . .

...
Nk ΘkN>k Nk ΘkL>k

L1Θ1N>1 . . . Lk ΘkN>k Θ0 + ∑
k
i=1 Li Θi L>i


=
[

B C
C> D

]

The Schur complement[
B C

C> D

][
∆λ1
∆λ2

]
=
[

g1
g2

]
⇐⇒ (D−C>B−1C)∆λ2 = (g2−C>B−1g1)

B∆λ1 = (g1−C∆y2)

System with B solved by k Cholesky factorizations.
Schur complement S = D−C>B−1C with large fill-in: system solved by PCG.
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IPM for block-structured and large-scale problems

The preconditioner

Based on P-regular splitting S = D− (C>B−1C) (SIOPT00,COAP07)
Spectral radius of D−1(C>B−1C)) satisfies ρ(D−1(C>B−1C))) < 1 and then

(D−C>B−1C)−1 =
(

∞

∑
i=0

(D−1(C>B−1C))i
)

D−1

Preconditioner M−1 obtained truncating the power series at term h
M−1 = D−1 if h = 0,
M−1 = (I + D−1(C>B−1C))D−1 if h = 1.

Quality of preconditioner depends on
ρ < 1: the farther from 1, the better the preconditioner.
Factorization of D: the easier and sparser, the better.

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM 15 / 25

jor
di.c

ast
ro@

upc
.ed

u

IPM for block-structured and large-scale problems

Exploit structure of linking constraints x i − x i+1 = 0
For instance for k = 4 blocks:

[L1 L2 L3 L4] =

I 0 −I 0 0 0 0 0
0 0 I 0 −I 0 0 0
0 0 0 0 I 0 −I 0


Then:

D = Θ0 +
k

∑
i=1

Li ΘiL>i = Θ0 +

Θx
1 + Θx

2 −Θx
2 0

−Θx
2 Θx

2 + Θx
3 −Θx

3
0 −Θx

3 Θx
3 + Θx

4


Properties of D

D is a shifted tri-diagonal matrix.
Very sparse, efficient to factorize: good preconditioner.
Specific routines can be developed for its factorization.
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Results with 2-class SVM problem using real-world instances

Sizes of real-world 2-class SVM instances
Instance #blocks† k #points p #features d

d
sm

al
l(

fe
w

fe
at

ur
es

)
a9a 100 32561 123
australian 2 690 14
covtype 10000 581012 54
ijcnn1 1000 49990 22
madelon 10 2000 500
mnist-ge5-lt5 2000 60000 780
mnist-odd-even 2000 60000 780
mushrooms 20 8124 112
sensit-combined 1000 78823 100
usps 100 7291 256
w1a 10 2477 300
w4a 30 7366 300
w8a 200 49749 300

d
la

rg
e

colon-cancer 10 62 2000
gisette 100 6000 5000
leu 2 38 7129
news20 40 19996 1355191
rcv1 40 20242 47236
real-sim 100 72309 20958
† Only used for SVM-BlockIP and CPLEX-20.1 models
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Results with 2-class SVM problem using real-world instances

CPU time with interior-point approaches
Instance SVM-BlockIP CPLEX-20.1 SVM-OOPS†

a9a 0.7 0.5 1.7
australian 0.0 0.1 0.0
covtype 23.9 5.2 12.6
ijcnn1 1.1 0.4 0.6
madelon 0.2 3.8 0.9
mnist-ge5-lt5 15.6 24.7 74.4
mnist-odd-even 12.5 28.8 87.1
mushrooms 1.7 0.1 0.3
sensit-combined 2.7 9.8 7.5
usps 0.3 † 18.7 1.6
w1a 0.1 † 0.6 0.2
w4a 0.5 † 3.6 0.8
w8a 4.3 1.8 25.3
colon-cancer 0.2 0.0 6.2
gisette 3.2 54.0 314.9
leu 0.1 0.1 —
news20 84.8 968.3 —
rcv1 7.9 1236.7 —
real-sim 14.4 40484.8 —
† k > 1 blocks used
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Results with 2-class SVM problem using real-world instances

CPU time with LIBSVM and LIBLINEAR(dual)
Instance SVM-BlockIP LIBSVM LIBLINEAR†

a9a 0.7 32.7 4.9
australian 0.0 0.0 0.1
covtype 23.9 9773.6 483.1
ijcnn1 1.1 13.4 25.5
madelon 0.2 2.6 1.8
mnist-ge5-lt5 15.6 1064.2 59.9
mnist-odd-even 12.5 817.4 45.9
mushrooms 1.7 1.2 2.8
sensit-combined 2.7 853.2 92.3
usps 0.3 11.1 9.2
w1a 0.1 0.0 0.2
w4a 0.5 0.2 2.3
w8a 4.3 7.8 15.8
colon-cancer 0.2 0.0 0.0
gisette 3.2 42.3 14.1
leu 0.1 0.1 0.0
news20 84.8 511.4 111.8
rcv1 7.9 151.4 12.2
real-sim 14.4 1777.8 91.2
† Solves different problem, without γ
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Results with 2-class SVM problem using real-world instances

Classification accuracy of SVM-BlockIP and LIBLINEAR
Similar accuracies for both codes, and, excluding 4 instances, always ≥ 80%
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Results with 1-class SVM problem using same real-world instances

CPU time with all available packages
Instance SVM-BlockIP CPLEX-20.1 LIBSVM† LIBLINEAR†

a9a 0.5 0.4 5.7 0.1
australian 0.1 0.1 0.0 0.0
covtype 10.6 4.2 1030.8 1.0
ijcnn1 1.0 0.3 5.5 0.1
madelon 0.2 8.3 0.4 0.1
mnist-ge5-lt5 4.5 23.5 328.5 1.1
mnist-odd-even 4.6 23.5 331.2 1.1
mushrooms 0.9 0.1 0.4 0.0
sensit-combined 1.6 5.7 79.1 1.1
usps 0.2 100.1 2.0 0.2
w1a 0.1 1.2 0.0 0.0
w4a 0.3 8.8 0.3 0.0
w8a 2.3 1.1 13.3 0.1
colon-cancer 0.1 0.0 0.0 0.0
gisette 1.6 79.5 16.5 0.5
leu 0.1 0.1 0.1 0.1
news20 55.2 2398.8 58.5 1.5
rcv1 4.2 1972.3 17.3 0.2
real-sim 15.1 91542.9 153.2 0.6
† Poor solutions provided (see next slide)
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Results with 1-class SVM problem using same real-world instances

1-class SVM accuracy of SVM-BlockIP and LIBLINEAR
SVM-BlockIP always provides better solutions
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Conclusions

Conclusions

BlockIP and SVMs by multiple variable splitting
BlockIP competitive with state-of-the-art solvers for SVMs.
It could solve new SVM models whose duals involve linear constraints.

Further applications (other than SVMs) in Data Science
Any constrained problem which allows multiple variable splitting.

Thanks for your attention
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