A new interior-point optimization approach for support vector machines for binary classification and outlier detection

Jordi Castro

Group of Mathematical Optimization Department of Statistics and Operations Research Institute of Mathematics UPC – IMTech Universitat Politècnica de Catalunya – BarcelonaTech Barcelona, Catalonia

New Bridges between Mathematics and Data Science 8–11 November 2021, Valladolid, Spain

Supported by MCIN/AEI/FEDER RTI2018-097580-B-I00

Jordi Castro (UPC–BarcelonaTech)

IPM for 2-class and 1-class SVM

Outline

1 The 2-class and 1-class Support Vector Machine (SVM) problem

2 IPM for block-structured and large-scale problems

3 Results with 2-class SVM problem using real-world instances

4 Results with 1-class SVM problem using same real-world instances

2-class SVM or Support Vector Classifier (SVC)

- Binary supervised classification technique. Useful for text classification.
- Purpose: to find two parallel hyperplanes separating two classes such that we both minimize the classification error and maximize the margin between the two separating hyperplanes:

- *p* points of *d* features: $x_i \in \mathbb{R}^d$ i = 1, ..., p.
- Labels $y_i \in \{+1, -1\}$ $i = 1, \dots, p$: class of point i.

Jordi Castro (UPC–BarcelonaTech)

IPM for 2-class and 1-class SVM

The 2-class and 1-class Support Vector Machine (SVM) problem

Modelling 2-class SVMs

Find hyperplane $(w, \gamma) \in \mathbb{R}^d \times \mathbb{R}$ maximizing separation margin between half-spaces $w^\top x + \gamma \ge +1$ and $w^\top x + \gamma \ge -1$, and minimizing misclassification. These two opposite objectives are weighted by parameter $v \in \mathbb{R}^+$.

We consider artificial variables $s_i \ge 0$, i = 1, ..., p, one for each point, to account for misclassification errors. The resulting constraints are:

 $y_i(\mathbf{w}^{\top}\mathbf{x}_i + \mathbf{\gamma}) + \mathbf{s}_i \geq 1$ $i = 1, \dots, p$

2-class SVM as a quadratic optimization problem

Primal formulation: QO problem in variables w, γ, s

$$\begin{array}{ll} \min_{\substack{(w,\gamma,s)\in\mathbb{R}^{d+1+p}\\ \text{s. to}}} & \frac{1}{2}w^{\top}w + ve^{\top}s\\ \text{s. to} & \frac{Y(Aw + \gamma e) + s \geq e}{s \geq 0} & [\lambda \in \mathbb{R}^{p}]\\ & \mu \in \mathbb{R}^{p} \end{array}$$

where $Y = diag(y_1, \ldots, y_p)$ and $A = [x_1 x_2 \ldots x_p]^\top$ stores rowwise vectors $x_i \in \mathbb{R}^d$.

Dual formulation of 2-class SVM: QO problem in variables λ

$$\max_{\lambda \in \mathbb{R}^{p}} \begin{array}{c} \lambda^{\top} e - \frac{1}{2} \lambda^{\top} Y A A^{\top} Y \lambda \\ \lambda^{\top} Y e = 0 \\ 0 \le \lambda \le v e \end{array}$$

Computationally expensive for interior-point solvers

- Systems with AA^{\top} to be solved in either primal or dual formulation.
- AA^{\perp} might be almost dense, of size p and rank min{p,d}.

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM

The 2-class and 1-class Support Vector Machine (SVM) problem

1-class SVM for Outlier Detection

Purpose of 1-class SVM

- Find hyperplane separating outliers from the rest of points, with maximum margin wrt. the origin.
- Parameter v is an upper bound on fraction of detected outliers (Schölkopf, Platt, Shawe-Taylor, Smola, Neural Computation 2001) (Chou, Lin, Lin, SIAM Conf. Data Mining, 2020).

Primal formulation of 1-class SVM

 $\min_{(w,\gamma,s)\in\mathbb{R}^{d+1+p}} \quad \frac{1}{2}w^{\top}w - \gamma + \frac{1}{vp}e^{\top}s$ s. to $Aw - \gamma e + s \ge 0$ $[\lambda \in \mathbb{R}^p]$ $s \ge 0$ $[\mu \in \mathbb{R}^p]$

Dual formulation of 1-class SVM

$$\max_{\lambda \in \mathbb{R}^{p}} \quad -\frac{1}{2}\lambda^{\top}AA^{\top}\lambda \\ \lambda^{\top}e = 1 \\ 0 \le \lambda \le \frac{1}{\nu p}e$$

IPM for 2-class and 1-class SVM Jordi Castro (UPC–BarcelonaTech)

Computationally expensive for interior-point solvers

7 / 25

Most efficient IPM approaches for (only) 2-class SVM

Standard dual of 2-class SVM

$$\begin{array}{ll} \max_{\lambda} & \lambda^{\top} e - \frac{1}{2} \lambda^{\top} YAA^{\top} Y\lambda \\ & \lambda^{\top} Ye = 0 \\ & 0 \leq \lambda \leq v \end{array}$$

Efficient IPMs devised when number of features is small: $d \ll p$.

Ferris, Mundson, SIOPT 2003

- Low-rank updates by Sherman-Morrison-Woodbury for Newton directions.
- Solved random data with millions of points but only 34 features.

Gondzio, Woodsend, COAP 2011: SVM-OOPS• Separable reformulation defining extra variables
$$u$$
 of dimension number of features:
• SVM-OOPS applied to real-world instances. $\max_{\lambda} \quad \lambda^{\top} e - \frac{1}{2} u^{\top} u$
 $\lambda^{\top} Ye = 0$
 $A^{\top} Y\lambda = u$
 $0 \le \lambda \le v, \quad u$ freeJordi Castro (UPC-BarcelonaTech)IPM for 2-class and 1-class SVM

The 2-class and 1-class Support Vector Machine (SVM) problem

Best SVM packages in machine learning community

LIBSVM for linear/nonlinear kernels (Chang, Lin, ACM TIST, 2011)

- Solves the dual of 2-class and 1-class SVM formulation.
- Uses the SMO algorithm, specific for dual SVM problems.

LIBLINEAR for linear kernels (Fan et al., JMLR, 2008)

 For 2-class SVM it transforms the problem to a "similar" unconstrained one without γ: It either solves the primal

$$\min_{w} \frac{1}{2} w^{\top} w + v \sum_{i=1}^{p} max(0, 1 - y_i w^{\top} x_i)^2$$

or the dual

$$\begin{array}{ll} \max_{\lambda} & \lambda^{\top} e - \frac{1}{2} \lambda^{\top} Y A A^{\top} Y \lambda \\ & 0 \leq \lambda \leq v \end{array}$$

using a trust-region CG Newton method or a coordinate descent algorithm.
For 1-class SVM it solves the dual including the (removed) linear constraint.

Our new proposal: solve a set of linked smaller SVMs

Use multiple variable splitting:

- Partition the dataset $A \in \mathbb{R}^{p \times d}$ in k subsets $A^i \in \mathbb{R}^{p_i \times d}$, i = 1, ..., k.
- 2 Consider k smaller SVMs, each with its own $(w^i, \gamma^i, s^i), i = 1, ..., k$ variables.
- 3 Link problems through constraints $(w^i, \gamma^i) = (w^{i+1}, \gamma^{i+1})$.

Complexity of Cholesky factorizations:

- of AA^{\top} is $O(p^3)$.
- of $A^i A^i^{\top}$ for i = 1, ..., k: $O\left(k\left(\frac{p}{k}\right)^3\right) = O\left(\frac{p^3}{k^2}\right)$.

New primal SVM formulation with multiple variable splitting:

$\min_{(w^i,\gamma^i,s^i)} \min_{i=1,\ldots,k}$	$\frac{1}{2}\left(\sum_{i=1}^{k} w^{i^{\top}} w^{i}\right) / k + v \sum_{i=1}^{k} \sum_{j=1}^{p_{i}} s_{j}^{i}$	
s. to	$Y^i(A^iw^i+\gamma^i e)+s^i\geq e$	$i=1,\ldots,k$
	$s^i \ge 0$	$i=1,\ldots,k$
	$w^i = w^{i+1}, \gamma^i = \gamma^{i+1}$	$i=1,\ldots,k-1$

Jordi Castro (UPC–BarcelonaTech)

IPM for 2-class and 1-class SVM

10 / 25

IPM for block-structured and large-scale problems

Specialized IPM for block-structured problems with linking constraints

- egn
- Developed and improved along several papers: EJOR 2021, OM&S 2021, SIOPT 2017, MP 2017, OM&S 2016, EJOR 2013, MP 2011, COAP 2007, AnnOR 2004, SIOPT 2000.
- Implemented in the BlockIP solver (C++, pprox 19000 lines of code)
- Relies on a combination of Cholesky and PCG for computing directions.
- It can be applied to the new SVM formulation.

Formulation of structured problems with linking constraints

Jordi Castro (UPC–BarcelonaTech)

IPM for 2-class and 1-class SVM

13 / 25

IPM for block-structured and large-scale problems

Solving normal equations by exploiting structure

The preconditioner

Based on *P*-regular splitting $S = D - (C^{\top}B^{-1}C)$ (SIOPT00,COAP07) Spectral radius of $D^{-1}(C^{\top}B^{-1}C)$ satisfies $\rho(D^{-1}(C^{\top}B^{-1}C)) < 1$ and then

$$(D - C^{\top}B^{-1}C)^{-1} = \left(\sum_{i=0}^{\infty} (D^{-1}(C^{\top}B^{-1}C))^{i}\right)D^{-1}$$

Preconditioner M^{-1} obtained truncating the power series at term h

Quality of preconditioner depends on

- $\rho < 1$: the farther from 1, the better the preconditioner.
- Factorization of *D*: the easier and sparser, the better.

Jordi Castro (UPC–BarcelonaTech)

15 / 25

IPM for block-structured and large-scale problems

Exploit structure of linking constraints $x^i - x^{i+1} = 0$ For instance for k = 4 blocks:

$$[L_1 \ L_2 \ L_3 \ L_4] = \begin{bmatrix} I & 0 & -I & 0 & 0 & 0 & 0 \\ 0 & 0 & I & 0 & -I & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & I & 0 & -I & 0 \end{bmatrix}$$

Then:

$$\mathbf{D} = \Theta_0 + \sum_{i=1}^k L_i \Theta_i L_i^\top = \Theta_0 + \begin{bmatrix} \Theta_1^x + \Theta_2^x & -\Theta_2^x & 0\\ -\Theta_2^x & \Theta_2^x + \Theta_3^x & -\Theta_3^x\\ 0 & -\Theta_3^x & \Theta_3^x + \Theta_4^x \end{bmatrix}$$

Properties of **D**

- D is a shifted tri-diagonal matrix.
- Very sparse, efficient to factorize: good preconditioner.
- Specific routines can be developed for its factorization.

Sizes of real-world 2-class SVM instances

	Instance	$\#$ blocks † k	#points <i>p</i>	#features <i>d</i>
d small (few features)	a9a	100	32561	123
	australian	2	690	14
	covtype	10000	581012	54
	ijcnn1	1000	49990	22
	madelon	10	2000	500
	mnist-ge5-lt5	2000	60000	780
	mnist-odd-even	2000	60000	780
	mushrooms	20	8124	112
	sensit-combined	1000	78823	100
	usps	100	7291	256
	w1a	10	2477	300
	w4a	30	7366	300
	w8a	200	49749	300
<i>d</i> large	colon-cancer	10	62	2000
	gisette	100	6000	5000
	leu	2	38	7129
	news20	40	19996	1355191
	rcv1	40	20242	47236
	real-sim	100	72309	20958

[†] Only used for SVM-BlockIP and CPLEX-20.1 models

Jordi Castro (UPC–BarcelonaTech) IPM for 2-class and 1-class SVM

18 / 25

Results with 2-class SVM problem using real-world instances

CPU time with interior-point approaches

SVM-BlockIP	CPLEX-20.1	SVM-OOPS [†]
0.7	0.5	1.7
0.0	0.1	0.0
23.9	5.2	12.6
1.1	0.4	0.6
0.2	3.8	0.9
15.6	24.7	74.4
12.5	28.8	87.1
1.7	0.1	0.3
2.7	9.8	7.5
0.3	† 18.7	1.6
0.1	[†] 0.6	0.2
0.5	† 3.6	0.8
4.3	1.8	25.3
0.2	0.0	6.2
3.2	54.0	314.9
0.1	0.1	—
84.8	968.3	—
7.9	1236.7	—
14.4	40484.8	
	SVM-BlockIP 0.7 0.0 23.9 1.1 0.2 15.6 12.5 1.7 2.7 0.3 0.1 0.5 4.3 0.2 3.2 0.1 84.8 7.9 14.4	SVM-BlockIP CPLEX-20.1 0.7 0.5 0.0 0.1 23.9 5.2 1.1 0.4 0.2 3.8 15.6 24.7 12.5 28.8 1.7 0.1 2.7 9.8 0.3 † 18.7 0.1 † 0.6 0.5 † 3.6 4.3 1.8 0.2 0.0 3.2 54.0 0.1 0.1 84.8 968.3 7.9 1236.7 14.4 40484.8

[†] k > 1 blocks used

CPU time with LIBSVM and LIBLINEAR(dual)

Instance	SVM-BlockIP	LIBSVM	LIBLINEAR [†]
a9a	0.7	32.7	4.9
australian	0.0	0.0	0.1
covtype	23.9	9773.6	483.1
ijcnn1	1.1	13.4	25.5
madelon	0.2	2.6	1.8
mnist-ge5-lt5	15.6	1064.2	59.9
mnist-odd-even	12.5	817.4	45.9
mushrooms	1.7	1.2	2.8
sensit-combined	2.7	853.2	92.3
usps	0.3	11.1	9.2
w1a	0.1	0.0	0.2
w4a	0.5	0.2	2.3
w8a	4.3	7.8	15.8
colon-cancer	0.2	0.0	0.0
gisette	3.2	42.3	14.1
leu	0.1	0.1	0.0
news20	84.8	511.4	111.8
rcv1	7.9	151.4	12.2
real-sim	14.4	1777.8	91.2

[†] Solves different problem, without γ

Jordi Castro (UPC–BarcelonaTech)

IPM for 2-class and 1-class SVM

20 / 25

Results with 2-class SVM problem using real-world instances

Classification accuracy of SVM-BlockIP and LIBLINEAR

Similar accuracies for both codes, and, excluding 4 instances, always $\geq 80\%$

CPU time with all available packages

Instance	SVM-BlockIP	CPLEX-20.1	LIBSVM [†]	$LIBLINEAR^\dagger$
a9a	0.5	0.4	5.7	0.1
australian	0.1	0.1	0.0	0.0
covtype	10.6	4.2	1030.8	1.0
ijcnn1	1.0	0.3	5.5	0.1
madelon	0.2	8.3	0.4	0.1
mnist-ge5-lt5	4.5	23.5	328.5	1.1
mnist-odd-even	4.6	23.5	331.2	1.1
mushrooms	0.9	0.1	0.4	0.0
sensit-combined	1.6	5.7	79.1	1.1
usps	0.2	100.1	2.0	0.2
w1a	0.1	1.2	0.0	0.0
w4a	0.3	8.8	0.3	0.0
w8a	• 2.3	1.1	13.3	0.1
colon-cancer	0.1	0.0	0.0	0.0
gisette	1.6	79.5	16.5	0.5
leu	0.1	0.1	0.1	0.1
news20	55.2	2398.8	58.5	1.5
rcv1	4.2	1972.3	17.3	0.2
real-sim	15.1	91542.9	153.2	0.6

[†] Poor solutions provided (see next slide)

Jordi Castro (UPC–BarcelonaTech)

PM for 2-class and 1-class SVM

23 / 25

Results with 1-class SVM problem using same real-world instances

1-class SVM accuracy of SVM-BlockIP and LIBLINEAR

SVM-BlockIP always provides better solutions

Conclusions

BlockIP and SVMs by multiple variable splitting

- BlockIP competitive with state-of-the-art solvers for SVMs.
- It could solve new SVM models whose duals involve linear constraints.

Further applications (other than SVMs) in Data Science

• Any constrained problem which allows multiple variable splitting.

Thanks for your attention

Jordi Castro (UPC–BarcelonaTech)

PM for 2-class and 1-class SVM