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Motivation

Mixed Integer
Linear Programs

(MILP)

Machine
Learning

(ML)

Combine knowledge from both worlds
Recent reviews: Bengio et al. [2021]; Gambella et al. [2021]
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Motivation

Literature review

Branch-and-bound methods: Karapetyan et al. [2017]; Kruber et
al. [2017]; Liberto et al. [2016]; Lodi and Zarpellon [2017].

X Optimality guarantees.
× Slow.

End-to-end approaches: Kool et al. [2019]; Larsen et al. [2018].

X Fast.
× Suboptimal/infeasible solutions.

Our approach

Computational gains.

Reduce risk of
infeasible problems.

Simpler problems

Remove non-critical constraints.

Solve a reduced optimization
problem.
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Motivation

Our methodology in a nutshell

Offline Online

Identify
critical

constraints

Train
ML model Predict

Solve
reduced
MILP
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Methodology

MILP

(Pθ[J ])


min
z∈Rn×Zq

cTz

s.t. aTj z ≤ bj , ∀j ∈ J

θ = {c,aj , bj ,∀j ∈ J }.
Pθ[J ] bounded and feasible.
Optimal solution z∗θ[J ] is a singleton.
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Methodology

Invariant Constraint Set, S

According to Calafiore [2010]:
S ⊂ J s.t. cTz∗θ[S] = cTz∗θ[J ]

The integrality of the decision variables is crucial to find out
which constraints belong to S.
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Methodology

LP vs MILP (Example taken from Pineda et al. [2020])
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Binding constraints
B = {j ∈ J : aTj z∗θ [J ] = bj}

S = B
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Quasi-active constraints Q
also belong to S.

S = B ∪ Q
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Methodology

Finding S is challenging in MILPs.
For each train instance t, we look for St, including some of
the non-binding constraints.
And reduced MILP Pθt [St] is solved.
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Methodology

How to find St?

Algorithm 1 Identifying an invariant constraint set for each instance t

0) Initialize St = Bt.
1) Solve Pθt [St] with solution z∗θt

[St].
2) If z∗θt

[St] is infeasible for Pθt [J ], go to step 3).
Otherwise, stop.

3) St := St ∪ {j ∈ J \ St : j is the most violated constraint},
go to step 1).
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Methodology

Recap

Offline Online

Identify
St, ∀t

Train ML(·)
with (θt,St), ∀t

Predict
St̃ = ML(θt̃)

Solve
Pθt̃

[St̃]
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Methodology

Advantages

Based on constraint generation. Crucial non-binding
constraints are guaranteed to be included.
Reduce risk of infeasible problems.
Independent on the ML method used.
Identifying S and training ML is performed offline.
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Computational Experience

Experimental Setup

Binary classification problem. knn.
Label stj = ±1 depending on inclusion on St.
Two approaches: B-learner and S-learner.
Synthetic and real-world applications.
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Computational Experience

Unit Commitment problem



min
x∈Rn,y∈{0, 1}n

n∑
i=1

cixi

s.t.
n∑
i=1

xi =
n∑
i=1

di,

− fj ≤
n∑
i=1

aij(xi − di) ≤ fj , j = 1, . . . , m

liyi ≤ xi ≤ uiyi, i = 1, . . . , n

θ = d.
n = 96.
m = 120 (240 constraints).
T = 8640 (Leave-one-out).
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Computational Experience

k

Bench. 5 10 20 50 100

B
-l

ea
rn

er constraints 240 [0, 23] [0, 23] [0, 26] [0, 26] [0, 28]
% infeasible 0% 45.71% 38.02% 31.73% 23.11% 16.29%

MILP time pr. 100% 24.59% 27.05% 28.72% 31.31% 33.43%

S
-l

ea
rn

er constraints 240 [0, 26] [0, 28] [0, 29] [0, 30] [0, 32]
% infeasible 0% 7.38% 2.78% 1.20% 0.55% 0.28%

MILP time pr. 100% 33.96% 34.97% 36.45% 36.14% 37.79%

Larger values of k imply more constraints (more
conservative).
Computational gains in both approaches.
Few extra constraints in S-learner.
Large improvements with regard to infeasible problems in
S-learner.
Adding constraints is not enough (k = 5 vs k = 50).
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Computational Experience

More details

Available at:
https://www.researchgate.net/publication/
350371853_Offline_constraint_screening_for_
online_mixed-integer_optimization
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Conclusions and Further Research

Conclusions
Approach which combines MILPs and ML.
Offline-online strategy.
Reduce risk of infeasible problems.
Reduce computational burden.
Tested on synthetic and real-world applications.

Further research
Other input parameters.
Introduce expert-knowledge information.
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