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Research area

Research area

Optimization

Permutation-based combinatorial optimization problems
(COPs)

Permutation-based COPs

Quadratic assignment problem (QAP)

Linear ordernig problem (LOP)

Traveling salesman problem (TSP)
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Quadratic Assignment Problem

Interpretation

A set of n facilities have to be assigned to n locations with the
goal of minimizing the cost, which is a function of the flows and
distances.

Source: https://www.localsolver.com/docs/last/exampletour/qap.html
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Quadratic Assignment Problem

Interpretation

A set of n facilities have to be assigned to n locations with the
goal of minimizing the cost, which is a function of the flows and
distances.

Mathematical definition

Given a distance matrix A = [aij ] and a flow matrix A′ = [a′ij ],
minimize the following objective function:

f (σ) =
n∑

i=1

n∑
j=1

aσ(i)σ(j)a
′
ij .
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Linear Ordering Problem

Interpretation

Given a matrix A, maximize the sum of the elements above the main
diagonal when the rows and columns of A are jointly reordered.

Mathematical definition

Given a matrix A = [aij ], maximize the following objective function:

f (σ) =
n−1∑
i=1

n∑
j=i+1

aσ(i)σ(j).
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Linear Ordering Problem: example
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Linear Ordering Problem

Mathematical definition

Given a matrix A = [aij ], maximize the following objective function:

f (σ) =
n−1∑
i=1

n∑
j=i+1

aσ(i)σ(j).

Particular case of the QAP

The LOP is a particular case of the QAP if

a′ij =

{
1 if i < j
0 otherwise
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Traveling Salesman Problem

Interpretation

Given n cities and the distances between them, find the shortest tour
that passes exactly once through all of the cities.

Source: https://blog.essaycorp.com/travelling-salesman-problem/
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Traveling Salesman Problem

Interpretation

Given n cities and the distances between them, find the shortest tour
that passes exactly once through all of the cities.

Mathematical definition

Given a distance matrix A = [aij ], minimize the following objective
function:

f (σ) = aσ(n)σ(1) +
n−1∑
i=1

aσ(i)σ(i+1).
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Traveling Salesman Problem

Mathematical definition

Given a distance matrix A = [aij ], minimize the following objective
function:

f (σ) = aσ(n)σ(1) +
n−1∑
i=1

aσ(i)σ(i+1).

Particular case of the QAP

The TSP is a particular case of the QAP if

a′ij =

{
1 if j = i + 1 or (i = n and j = 1)
0 otherwise
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Ideal scenario

The behaviour of metaheuristic algorithms varies from problem to
problem and even from instance to instance

A
Select a metaheuristic 

algorithm A that solves I 
efficiently

I
Given a COP 

instance I

Id
ea

l s
ce

na
rio

Given a problem, tell me the best algorithm for it!
Given an instance of a problem, tell me the best algorithm for
it!
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Taxonomy

Final objective
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Initial questions and motivation

Is there a tool for comparing instances coming from different
problems easily?

We would like to look for properties that affect the beahaviour
of algorithms and that are shared by instances of different
problems.

Example:
intersection between problems (in terms of objective functions).

P Q P
                             Q
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Initial questions and motivation

Is there a tool for comparing instances coming from different
problems easily?

We would like to look for properties that affect the beahaviour
of algorithms and that are shared by instances of different
problems.

Example: intersection between problems (in terms of objective
functions).

Is there a framework that puts instances of different problems
in the same terms?

SOLUTION: USE THE FOURIER TRANSFORM
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Classic Fourier transform

Fourier coefficients

a0 =
1

L

∫ L

−L
f (x)dx

an =
1

L

∫ L

−L
f (x) cos

(
nπx
L

)
dx

bn =
1

L

∫ L

−L
f (x) sin

(
nπx
L

)
dx

Source:

https://pgfplots.net/fourier-

transform/

Decomposition of f

f (x) =
1

2
a0 +

∞∑
n=1

an cos
(nπx

L

)
+
∞∑
n=1

bn sin
(nπx

L

)
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Fourier transform over the symmetric group

Base functions

Irreducible representations of the symmetric group.

Matrix-valued functions.

The number of irreducible representations of Σn is the number
of partitions of n.

Partition of n

A partition of a number n is a tuple that sums to n.

Example (n = 5)

Partitions of 5:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).
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Fourier transform over the symmetric group

Base functions

Irreducible representations of the symmetric group.

Matrix-valued functions.

The number of irreducible representations of Σn is the number
of partitions of n.

Partition of n

A partition of a number n is a tuple that sums to n.

Example (n = 5)

Irreducible representations of Σ5:

ρ(5), ρ(4,1), ρ(3,2), ρ(3,1,1), ρ(2,2,1), ρ(2,1,1,1), ρ(1,1,1,1,1).
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Fourier transform over the symmetric group

Base functions

Irreducible representations of the symmetric group.

Matrix-valued functions.

The number of irreducible representations of Σn is the number
of partitions of n.

Example: ρ(n)

ρ(n) : Σn −→ R1×1 is the constant function ρ(n)(σ) = (1).
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Fourier transform over the symmetric group

Base functions

Irreducible representations of the symmetric group.

Matrix-valued functions.

The number of irreducible representations of Σn is the number
of partitions of n.

Example: ρ(2,1)

ρ(2,1)(1, 2, 3) =

[
1 0
0 1

]
ρ(2,1)(1, 3, 2) =

[
1/2

√
3/2√

3/2 −1/2

]
ρ(2,1)(2, 1, 3) =

[
−1 0
0 1

]
ρ(2,1)(2, 3, 1) =

[
−1/2 −

√
3/2√

3/2 −1/2

]
ρ(2,1)(3, 1, 2) =

[
−1/2

√
3/2

−
√

3/2 −1/2

]
ρ(2,1)(3, 2, 1) =

[
1/2 −

√
3/2

−
√

3/2 −1/2

]
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Fourier transform over the symmetric group

Fourier coefficients

Given a function f : Σn −→ R, the Fourier coefficient associated
with partition λ is:

f̂λ =
∑
σ

f (σ) · ρλ(σ).

The collection of all Fourier coefficients is the Fourier transform of
f .

Fourier inversion theorem

f (σ) =
1

|Σn|
∑
λ

dρλTr [f̂λ · ρλ(σ)]
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Fourier transform over the symmetric group
Interpretation

Coefficient f̂(n)

f̂(n) =
∑
σ

f (σ).

Directly related to the mean value of f .

Other coefficients

If f = p (probability),

p̂(n−1,1) captures information about first order marginals:
p(σ : σ(i) = j).

p̂λ (λ 6= (n), (n − 1, 1)) captures information about higher
order marginals.
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Characterization of the LOP
Example

Fitness function:

f (1, 2, 3) = 9

f (1, 3, 2) = 7

f (2, 1, 3) = 14

f (2, 3, 1) = 15

f (3, 1, 2) = 8

f (3, 2, 1) = 13

Fourier transform (alternative representation of f ):

f̂(3) ≈ (66) f̂(2,1) ≈
(
−6.5 −11.3
0.9 1.5

)
f̂(1,1,1) ≈ (−2).
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Characterization of the LOP
Structure for low dimensions

Structure of the example

f̂(3) and f̂(1,1,1) are arbitrary, while

f̂(2,1) ≈
(
−6.5 −11.3
0.9 1.5

)
≈
(
−6.5

√
3 · (−6.5)

0.9
√

3 · 0.5

)
.

Structure when n = 3

f̂(3) and f̂(1,1,1) are arbitrary, while

f̂(2,1) =

 | |
x
√

3x
| |


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Characterization of the LOP
Structure for low dimensions

Structure when n = 4

f̂(4) is arbitrary

f̂(3,1) and f̂(2,1,1) are rank-1:

f̂(3,1) =

 | | |
x
√

3x
√

6x
| | |

 f̂(2,1,1) =

 | | |√
2y y

√
3y

| | |


f̂(2,2), f̂(1,1,1,1) = 0
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Characterization of the LOP
Theorem

Theorem

If f : Σn −→ R is the objective function of an LOP instance, then
its FT has the following properties:

1 f̂λ = 0, if λ 6= (n), (n − 1, 1), (n − 2, 1, 1).

2 f̂λ has at most rank one for λ = (n − 1, 1), (n − 2, 1, 1).
Having rank one is equivalent to the fact that the matrix
columns are proportional.

3 For λ = (n − 1, 1), (n − 2, 1, 1) and a fixed dimension n, the
proportions among the columns of f̂λ are the same for all the
instances.
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Characterization of the LOP
Reciprocal implication

Theorem

If f is an LOP function with non-null (n − 1, 1) and (n − 2, 1, 1)
Fourier coefficients, and a function g satisfies the conditions
mentioned in the previous theorem, that is,

1 ĝλ = 0, for λ 6= (n), (n − 1, 1), (n − 2, 1, 1).

2 ĝ(n−1,1) is 0 or rank-one with the same column proportions as

f̂(n−1,1).

3 ĝ(n−2,1,1) is 0 or rank-one with the same column proportions

as f̂(n−2,1,1).

Then, g is the objective function of an LOP instance.
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Characterization of the LOP
Proportions of coefficient (n − 1, 1)
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Characterization of the LOP
Proportions of coefficient (n − 2, 1, 1)
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Characterization of the TSP
Structure for low dimensions

Structure when n = 4

f̂(4) is arbitrary.

f̂(2,2) and f̂(2,1,1) are rank-1:

f̂(2,2) =

 | |
x − 1√

3
x

| |

 f̂(2,1,1) =


| | |

y
√

1
2y

√
3
2y

| | |


f̂(3,1), f̂(1,1,1,1) = 0.

If the TSP is symmetric, f̂(2,1,1) = 0.
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Characterization of the TSP
Proportions of coefficient (n − 2, 2)
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Characterization of the TSP
Proportions of coefficient (n − 2, 1, 1)
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Characterization of the QAP

Theorem

If f : Σn −→ R is the objective function of a QAP instance, then
its FT has the following properties:

1 f̂λ = 0, if λ 6= (n), (n − 1, 1), (n − 2, 2), (n − 2, 1, 1).

2 f̂λ has at most rank one for λ = (n − 2, 2), (n − 2, 1, 1).

3 f̂λ has at most rank two for λ = (n − 1, 1).

The reciprocal is also true (proved).
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Characterizations: summary

Non-zero Fourier coefficients when n = 5:
Sheet1

Page 1

COPs
Fourier coefficients

(5) (4, 1) (3,2) (3,1,1) (2,2,1) (2,1,1,1) (1,1,1,1,1)

LOP ✓ ✓ ✓
STSP ✓ ✓
TSP ✓ ✓ ✓
QAP ✓ ✓ ✓ ✓

As n grows, the number of Fourier coefficients grows, but
these problems still have at most 4 non-zero coefficients.
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Consequences of the characterizations
Intrinsic dimensions of the problems

Number of parameters needed to define the different problems:

COP Usual representation Fourier representation

LOP n2 − n n2−n
2 + 1

TSP n(n − 1) (n − 1)(n − 2)

STSP n(n−1)
2

(n−1)(n−2)
2

QAP 2(n2 − n) 2(n2 − n)− 7
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Consequences of the characterizations
Intersections between problems

Consider a COP as a set of objective functions, then:

The intersection between the LOP and the symmetric TSP is
the set of constant functions.

Sheet1

Page 1

COPs
Fourier coefficients

(1,1,...,1)

LOP ✓ ✓ ✓
STSP ✓ ✓

(n) (n-1, 1) (n-2,2) (n-2,1,1) (n-2,2,1) ···
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Consequences of the characterizations
Intersections between problems

Consider a COP as a set of objective functions, then:

The intersection between the LOP and the symmetric TSP is
the set of constant functions.

The intersection between the LOP and the TSP is the set of
constant functions.

The intersection between the LOP/(symmetric)TSP and the
QAP is the LOP/(symmetric)TSP.
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Breaking down the LOP

Consider the problem composed by those objective functions with
a given coefficient equal to 0.

What happens if coefficient (n − 2, 1, 1) is 0?

The problem is P (proved)

We implemented a polynomial algorithm

What happens if coefficient (n − 1, 1) is 0?

The problem is NP-hard (proved)
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Conclusion

Many interesting open questions:

Which is the minimal Fourier representation for a problem to
be NP-hard?

The intersection of problems is trivial, but what happens with
rankings?

Relation between the Fourier decomposition and elementary
lanscape decomposition?

Other problems?

Taxonomy
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