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Research area

Research area
m Optimization

m Permutation-based combinatorial optimization problems
(COPs)

Permutation-based COPs
m Quadratic assignment problem (QAP)
m Linear ordernig problem (LOP)

m Traveling salesman problem (TSP)
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Quadratic Assignment Problem

Interpretation
A set of n facilities have to be assigned to n locations with the
goal of minimizing the cost, which is a function of the flows and

distances.

Source: https://www.localsolver.com/docs/last/exampletour/qap.html

Conclusion
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Quadratic Assignment Problem

Interpretation

A set of n facilities have to be assigned to n locations with the
goal of minimizing the cost, which is a function of the flows and
distances.

Mathematical definition

Given a distance matrix A = [a;] and a flow matrix A" = [a}],
minimize the following objective function:

F(0) =D D a(i)ol) -

i=1 j=1
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Linear Ordering Problem

Interpretation

Given a matrix A, maximize the sum of the elements above the main
diagonal when the rows and columns of A are jointly reordered.

Mathematical definition

Given a matrix A = [ajj], maximize the following objective function:

-5 3w

i=1 j=i+1
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Linear Ordering Problem

Mathematical definition
Given a matrix A = [aj;], maximize the following objective function:

n—1 n
F(0) =Y D an(ie)-
=il =il

Particular case of the QAP
The LOP is a particular case of the QAP if

S 1 if i<y
7710 otherwise
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Given n cities and the distances between them, find the shortest tour
that passes exactly once through all of the cities.

Source: https://blog.essaycorp.com/travelling-salesman-problem/
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Traveling Salesman Problem

Interpretation
Given n cities and the distances between them, find the shortest tour
that passes exactly once through all of the cities.

Mathematical definition
Given a distance matrix A = [a;;], minimize the following objective

function:
n—1

F(0) = as(nyot) + D a(i)o(i+1)-
i=1
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Traveling Salesman Problem

Mathematical definition

Given a distance matrix A = [a;;], minimize the following objective

function:
n—1

F(0) = ap(mo() T D A(i)o(i+1)-

i=1

Particular case of the QAP
The TSP is a particular case of the QAP if
S 1 ifj=i+1or (i=nandj=1)
10 otherwise
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|deal scenario

The behaviour of metaheuristic algorithms varies from problem to
problem and even from instance to instance

I — A4

Given a COP Select a metaheuristic
instance / algorithm A that solves /
efficiently

m Given a problem, tell me the best algorithm for it!
m Given an instance of a problem, tell me the best algorithm for
it!
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Problem instances

Final objective

A
10
12 ]; )i
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Taxonomy

Instances that can be solved efficiently by the same algorithms

are grouped together
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m Is there a tool for comparing instances coming from different
problems easily?
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Initial questions and motivation

m Is there a tool for comparing instances coming from different
problems easily?

m We would like to look for properties that affect the beahaviour
of algorithms and that are shared by instances of different
problems.
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Initial questions and motivation

m Is there a tool for comparing instances coming from different
problems easily?

m We would like to look for properties that affect the beahaviour
of algorithms and that are shared by instances of different
problems.

m Example:
intersection between problems (in terms of objective functions).

)
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Initial questions and motivation

m Is there a tool for comparing instances coming from different
problems easily?

m We would like to look for properties that affect the beahaviour
of algorithms and that are shared by instances of different
problems.

m Example: intersection between problems (in terms of objective
functions).

m Is there a framework that puts instances of different problems
in the same terms?
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Initial questions and motivation

m Is there a tool for comparing instances coming from different
problems easily?

m We would like to look for properties that affect the beahaviour
of algorithms and that are shared by instances of different
problems.

m Example: intersection between problems (in terms of objective
functions).

m Is there a framework that puts instances of different problems
in the same terms?

SOLUTION: USE THE FOURIER TRANSFORM

17/49



Introduction Fourier Transform COPs in Fourier space Conclusion
00000000000 00@000000 0000000000000 0000 [o]e]

Classic Fourier transform

Fourier coefficients

1 .
= Zf_L f(x)dx

n f ) cos (T) dx Source:
https://pgfplots.net/fourier-
= — f f s|n ( ) dX transform/

Decomposition of

f(x) = %ao + i ap Cos (nLLX) + i bn sin <”7TTX>
n=1

n=1
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Fourier transform over the symmetric group

Base functions
Irreducible representations of the symmetric group.
m Matrix-valued functions.

m The number of irreducible representations of X, is the number
of partitions of n.

19/49



Introduction Fourier Transform COPs in Fourier space Conclusion
00000000000 000e00000 0000000000000 0000 [o]e]

Fourier transform over the symmetric group

Base functions
Irreducible representations of the symmetric group.
m Matrix-valued functions.

m The number of irreducible representations of X, is the number
of partitions of n.

Partition of n
A partition of a number n is a tuple that sums to n.

Example (n = 5)
Partitions of 5:

(5),(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1),(1,1,1,1,1).
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Fourier transform over the symmetric group

Base functions
Irreducible representations of the symmetric group.
m Matrix-valued functions.

m The number of irreducible representations of ¥, is the number
of partitions of n.

Partition of n
A partition of a number n is a tuple that sums to n.

Example (n = 5)

Irreducible representations of Xs:
P(5)s P(4,1)5 P(3,2)5 P(3,1,1)5 P(2,2,1)5 P(2,1,1,1)5 P(1,1,1,1,1)"
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Fourier transform over the symmetric group

Base functions
Irreducible representations of the symmetric group.
m Matrix-valued functions.

m The number of irreducible representations of X, is the number
of partitions of n.

Example: p(,)

P(n) - Xn — R*1 is the constant function p(my(o) = (1).

22/49



Introduction Fourier Transform COPs in Fourier space Conclusion
00000000000 000000800 0000000000000 0000 [o]e]

Fourier transform over the symmetric group

Base functions
Irreducible representations of the symmetric group.
m Matrix-valued functions.
m The number of irreducible representations of ¥, is the number
of partitions of n.

Example: p(21)

p(271)(1,2,3) = _é g_):| p(2,1)(173a2) = _%/22 §;§:|
Pa(2:1,3) = :_01 ﬂ pen(®3,1) = %ﬁ _—\Sﬂ
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Fourier transform over the symmetric group

Fourier coefficients
Given a function f : ¥, — R, the Fourier coefficient associated
with partition A is:

A=Y (o) palo).

The collection of all Fourier coefficients is the Fourier transform of
f.
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Fourier transform over the symmetric group

Fourier coefficients

Given a function f : ¥, — R, the Fourier coefficient associated
with partition A is:

A=Y (o) palo).

The collection of all Fourier coefficients is the Fourier transform of
f.
Fourier inversion theorem

0) = 1 X o TlA (o)
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Fourier transform over the symmetric group

Interpretation

Coefficient f(,,)

foy = > f(0).

Directly related to the mean value of f.

Other coefficients
If f = p (probability),
® P(,—1,1) captures information about first order marginals:
plo : o(i) = J).
m Py (A#(n),(n—1,1)) captures information about higher
order marginals.
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Fourier Transform
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COPs in Fourier space
©0000000000000000

Conclusion

(e}

Fitness function:

£(1,2,3) =9
£(1,3,2) =
£(2,1,3) = 14
£(2,3,1) = 15
£(3,1,2) =
£(3,2,1) = 13

Fourier transform (alternative representation of f ):

’?(3) ~ (66) 7?(2,1) ~ (—

1,1,1) = (—2).
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Characterization of the LOP

Structure for low dimensions

Structure of the example

f(3) and 1?(1,171) are arbitrary, while

£ (65 —1L3) _ (65 V3 (—6.5)
@GH~Vo09 15 )7\ o009 V3-05 )
Structure when n =3

1?(3) and f?l,l,l) are arbitrary, while

|
2,1) = [X \ﬁx
|

—~h
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Characterization of the LOP

Fourier Transform
000000000

Structure for low dimensions

Structure when n =4

1?(4) is arbitrary
3

f3,1) and f(2,1,1) are rank-1:

>

(

&371) = [ X \ﬁx \/gx

2.9) 7?(1,1,1,1) =0

COPs in Fourier space Conclusion
00®00000000000000 oo
. .
foiny = [V2y ¥y V3y
|
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Characterization of the LOP

Theorem

Theorem

If f : ¥, — R is the objective function of an LOP instance, then
its FT has the following properties:

A =0, ifx#(n),(n—1,1),(n—2,1,1).

f\ has at most rank one for A = (n —1,1),(n —2,1,1).
Having rank one is equivalent to the fact that the matrix
columns are proportional.

For \=(n—1,1),(n—2,1,1) and a fixed dimension n, the
proportions among the columns of f\ are the same for all the
instances.
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Characterization of the LOP

Reciprocal implication

Theorem

If f is an LOP function with non-null (n —1,1) and (n —2,1,1)
Fourier coefficients, and a function g satisfies the conditions
mentioned in the previous theorem, that is,

8gx=0, for \ # (n),(n—1,1),(n—2,1,1).
8(n—1,1) Is 0 or rank-one with the same column proportions as
7?(n—1,1)-
8(n—2,1,1) Is 0 or rank-one with the same column proportions
as &nf2,1,1)-
Then, g is the objective function of an LOP instance.
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1

Y Y Y
N N N N
-71 -71
(n—3)2(n—2) (n-2)2(7._1)
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Characterization of the TSP

Structure for low dimensions

Structure when n =4

7?(4) is arbitrary.

7?(272) and 1?(271,1) are rank-1:

| | \ \ |
. q X
fle2) = [* ~— 3% fle1,1) = |y %y %y

7?(3,1)7 7?(1,1,1,1) =0.

m If the TSP is symmetric, 51 1) = 0.
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Characterization of the QAP

Theorem

If f - X, — R is the objective function of a QAP instance, then
its FT has the following properties:

A =0, if\#(n),(n—1,1),(n—2, 2),(n—2,1,1).
f\ has at most rank one for A = (n —2,2), (n—2,1,1).
f\ has at most rank two for A = (n —1,1).

m The reciprocal is also true (proved).
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Characterizations: summary

Non-zero Fourier coefficients when n = 5:

Fourier coefficients
COPs (5) 4,1) (3,2 (3,1,1) (2,2,1) 2111 (1,111.2)
LOP v v v
STSP 4 4
TSP v v v
QAP v v v v

m As n grows, the number of Fourier coefficients grows, but
these problems still have at most 4 non-zero coefficients.
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Consequences of the characterizations

Intrinsic dimensions of the problems
Number of parameters needed to define the different problems:

COP  Usual representation Fourier representation

LOP n?—n % +1
TSP n(n—1) (n—1)(n—2)
STSP n(n2—1) (n—1)2(n—2)
QAP 2(n® — n) 2(n®> —n)—7
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Consequences of the characterizations

Intersections between problems

Consider a COP as a set of objective functions, then:

m The intersection between the LOP and the symmetric TSP is
the set of constant functions.

Fourier coefficients
COPs () (n-1,1) (n-2,2) (n-2,1,1)  (n-2,2,1) e @1,..,1)
LOP 4 4 v
STSP 4 v/
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Consequences of the characterizations

Intersections between problems

Consider a COP as a set of objective functions, then:

m The intersection between the LOP and the symmetric TSP is

the set of constant functions.

m The intersection between the LOP and the TSP is the set of

constant functions.

Fourier coefficients
COPs () (n-1,1) (n-2,2) (n-2,1,1)  (n-2,2,1) e 1,..,1)
LOP 4 4 4
TSP 4 4 4
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Consequences of the characterizations

Intersections between problems

Consider a COP as a set of objective functions, then:

m The intersection between the LOP and the symmetric TSP is
the set of constant functions.

m The intersection between the LOP and the TSP is the set of
constant functions.

m The intersection between the LOP/(symmetric) TSP and the
QAP is the LOP/(symmetric) TSP.
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Breaking down the LOP

Consider the problem composed by those objective functions with
a given coefficient equal to 0.

What happens if coefficient (n —2,1,1) is 0?7
m The problem is P (proved)

m We implemented a polynomial algorithm

What happens if coefficient (n —1,1) is 07
The problem is NP-hard (proved)
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Many interesting open questions:

m Which is the minimal Fourier representation for a problem to
be NP-hard?
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Many interesting open questions:

m Which is the minimal Fourier representation for a problem to
be NP-hard?

m The intersection of problems is trivial, but what happens with
rankings?
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Conclusion

Many interesting open questions:

m Which is the minimal Fourier representation for a problem to
be NP-hard?

m The intersection of problems is trivial, but what happens with
rankings?

m Relation between the Fourier decomposition and elementary
lanscape decomposition?
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Conclusion

Many interesting open questions:

m Which is the minimal Fourier representation for a problem to
be NP-hard?

m The intersection of problems is trivial, but what happens with
rankings?

m Relation between the Fourier decomposition and elementary
lanscape decomposition?

m Other problems?
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Conclusion

Many interesting open questions:

Which is the minimal Fourier representation for a problem to
be NP-hard?

The intersection of problems is trivial, but what happens with
rankings?

Relation between the Fourier decomposition and elementary
lanscape decomposition?

Other problems?
Taxonomy
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