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Motivation



Motivation

• Neural Networks (NN) are one of the most widely used tools in

Machine Learning.

• However, NNs present some limitations:

• Considered ”black boxes”.

• Hyperparameter tuning.

• Assessing the uncertainty and error in their predictions.

• A new perspective: the authors of Cheng et al., 2019 conjectured

that NNs are equivalent to Polynomial Regression (PR).
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Motivation: Proposed equivalence in Cheng et al., 2019

Publication

Cheng, X., Khomtchouk, B., Matloff, N., & Mohanty, P. (2019).

Polynomial Regression As an Alternative to Neural Nets.

arXiv:1806.06850 [cs, stat]

They present the following ideas:

• NNs are a form of PR.

• The degree of the polynomial increases with each hidden layer.

• PR properties can be used to study and even solve NN problems.

• Experimental results: PR performs as good as NNs in the used

datasets.

• Using PR instead of NNs: R package (polyreg).

However...

The relation between PR and NNs is not explicitly proven.
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Our contribution

Publication

Morala, P., Cifuentes, J. A., Lillo, R. E., & Ucar, I. (2021). Towards a

mathematical framework to inform neural network modelling via

polynomial regression. Neural Networks, 142, 57–72.

https://doi.org/10.1016/j.neunet.2021.04.036

Main objectives:

• Find an explicit expression to build a PR from the weights of a given

NN, using Taylor expansion.

• First, for a single hidden layer NN, then extending it to deeper layers.

• Study through simulations the validity of the proposed method.
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Proposed method



Notation: Polynomial Regression

• Polynomial Regression:

Y = β0 + β1x1 + · · ·+ βpxp + · · ·+
β11x

2
1 + β12x1x2 + · · ·+ β1p...px1x

k−1
p + βp...px

k
p .
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Notation: Neural Network

• Hidden layer neurons:

yj = g

(
p∑

i=0

wi,jxi

)
.

• Final output:

z =
h1∑
j=0

vjyj =
h1∑
j=0

vjg

(
p∑

i=0

wi,jxi

)
.
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Proposed method: Necessary tools
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Proposed Method: Building the coefficients formula

• Combining all of the previous steps to obtain the output of the NN,

setting the Taylor expansion at a = 0 and truncating the series at a

given degree q:

z = v0 +
h1∑
j=1

vj

q∑
n=0

g (n)(0)

n!
×

×

 ∑
m0+···+mp=n

(
n

m0, . . . ,mp

)
(w0,jx0)

m0 · · · (wp,jxp)
mp


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Proposed Method: Building the coefficients formula

The following PR coefficients are obtained:

• Intercept:

β0 = v0 +
h1∑
j=1

vj

(
q∑

n=0

g (n)(0)

n!
(w0,j)

n

)
• Rest of the coefficients:

βl1l2...lt =
h1∑
j=1

vj

(
q∑

n=t

g (n)(0)

(n − t)! ·m1! · · ·mp!
(w0,j)

n−t(w1,j)
m1 . . . (wp,j)

mp

)
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Taylor expansion validity for

some activation functions



Activation Functions considered:

We consider the three following activation functions:

• Softplus or SmoothRelu:

g(x) = ln (1 + ex)

• Hyperbolic tangent:

g(x) = tanh(x) =
ex − e−x

ex + e−x

• Sigmoid:

g(x) =
1

1 + e−x
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Taylor expansion: softplus
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Taylor expansion: hyperbolic tangent
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Taylor expansion: sigmoid
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Simulation study (without

restrictions)



Data generation

where  polynomial 

Data Generation

Divide in 75% train
and 25% test

Scale to Scale to 

Train NN
(neuralnet)

Obtain coefficients with the
proposed method

Performance:
MSE

Scaling and NN
training

Proposed method
and perfromance

measurement
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Performance examples

−1.0

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5

Predicted Y with NN

O
ri

g
in

a
l 
Y

A

−1.0

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5

Predicted Y with PR

P
re

d
ic

te
d
 Y

 w
it
h
 N

N

B

0

2

4

6

−5.0 −2.5 0.0 2.5 5.0

x

y

C

(1)

−1.0

−0.5

0.0

0.5

−1.0 −0.5 0.0 0.5

Predicted Y with NN

O
ri

g
in

a
l 
Y

A

−1.0

−0.5

0.0

0.5

−0.5 0.0 0.5 1.0

Predicted Y with PR

P
re

d
ic

te
d
 Y

 w
it
h
 N

N

B

−2

0

2

4

−2 −1 0 1 2

x

y

C

(2)

16



500 MSE simulations scaling to [-1,1]
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Same data, different NNs (1)

Example with Neural Network 1
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B) Extended range
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Same data, different NNs (2)

Example with Neural Network 2
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y
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B) Extended range
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Same data, 4 different NNs: Original surface

Original polynomial
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Simulation study (with

restriction)



Constraining the weights in the hidden layers

• Limited region where Taylor expansion is accurate.

• Impose an ℓ1-norm equal to one for the hidden layer weights:

||w⃗j ||1 =
∑p

i=0 |wi,j | = 1 for all j .

• Then the synaptic potentials uj are also constrained by 1 in absolute

value:

|uj | =

∣∣∣∣∣
p∑

i=0

wi,jxi

∣∣∣∣∣ ≤
p∑

i=0

|wi,jxi | ≤
p∑

i=0

|wi,j | = ||w⃗j ||1 = 1,

where |xi | ≤ 1 because of the [−1, 1] scaling. Therefore, |uj | ≤ 1.
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Example using weight constraints

22



MSE simulations (restricted weights)
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Surface example: Original Polynomial
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Surface example: PR obtained from a NN
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Conclusions and future work



Limitations and future work

• Limited to a single hidden layer regression:

• Extension to deeper NN’s.

• Extension to classification problems, with more than one output and

with a non linear AF in the output layer.

• The validity of the method highly depends on the weights obtained

in the NN and how they affect the Taylor expansion.

• Further extend the simulation study to different situations: higher

dimension problems, correlation between variables or even real data

examples, focusing on how this improves interpretability.

• Implement the proposed method in a package (R/Python).
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Conclusions

• Our main contribution: Explicit formula to obtain a PR from a

single hidden layer NN.

• The work developed shows that it is possible to explore a

mathematical framework relating PR with NN as was conjectured in

Cheng et al., 2019.

• Possible applications:

• NNs interpretability by means of the PR coefficients.

• Exploring NNs hyperparameter and structure tuning using PR

properties.

• Model NNs error and uncertainty using PR.
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Thanks for your attention!

Contact: pablo.morala@uc3m.es
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