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Introduction

Disease mapping deals with areal count data from non-overlapping units
focussing on the estimation of the geographical distribution of a disease
and its evolution in time.

The development of statistical techniques for disease mapping has been
tremendous in the last few years, mainly due to the availability of
information from modern registers with high quality data recorded
throughout many years and regions.

The information acquired from these analyses is of great interest for health
researchers, epidemiologists and policy makers as it helps to

formulate hypotheses about the disease’s etiology
look for main risk factors
allocate economic resources efficiently in prevention or intervention programs
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Introduction

Three main inferential goals in disease mapping:

1. To provide accurate estimates of mortality/incidence risks or rates in space
and time

2. To unveil underlying spatial and spatio-temporal patterns

3. To detect high-risk areas or hotspots

The great variability inherent to classical estimation measures, makes it
necessary to use statistical models to smooth risks borrowing information
from spatial and temporal neighbors.

Despite the enormous expansion of modern computers and the
development of new software and estimation techniques to make fully
Bayesian inference, dealing with massive data is still computationally
challenging.
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Introduction

Mixed Poisson models including conditional autoregressive (CAR) priors for
space and random walk priors for time including space-time interactions
(Knorr-Held, 2000) are typical models in space-time disease mapping.

Other approaches based on reduced rank multidimensional P-splines have
been also proposed in this field (see for example Ugarte et al., 2017).

However, are these smoothing methods feasible when analyzing ‘very’ large
spatio-temporal datasets?

Objective: To propose a scalable Bayesian modeling approach to smooth
mortality or incidence risks in a high-dimensional spatio-temporal disease
mapping context.
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Classical risk estimation measures
Spatio-temporal CAR models

Classical risk estimation measures

Classical risk estimation measures such as the standardized mortality ratio
(SMR), are extremely variable when analyzing rare diseases (with few
cases) or low-populated areas.

Therefore, the use of statistical models to smooth risks borrowing
information from spatial and temporal neighbors is necessary.
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Figure 1: Maps with SMRs and smooth relative risks in the municipalities of Spain.
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Statistical models in space-time disease mapping

Let us assume that the region under study is divided into contiguous small
areas labeled as i = 1, . . . ,S , and data are available for consecutive time
periods labeled as t = 1, . . . ,T .

Oit denotes the number of observed cases for area i and time t.

Eit denotes the number of expected cases for area i and time t.

rit denotes the relative risk of mortality (incidence).

Then,

Oit |rit ∼ Poisson(µit = Eitrit)

logµit = log Eit + log rit

Depending on the specification of log rit , different models are defined.
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Spatio-temporal CAR models

Slight modifications of the spatio-temporal CAR models described by
Knorr-Held (2000) were considered by Ugarte et al. (2014)

log rit = α + ξi + γt + δit

- α is a global intercept.
- ξ is a spatially structured random effect with a CAR prior distribution.
- γt is a temporally structured random effect that follows a random walk prior

distribution.
- δit is a spatio-temporal random effect (four types of interactions).

These models are flexible enough to describe real situations, and their
interpretation is simple and attractive.

However, the models are typically not identifiable and appropriate sum-to-zero
constraints must be imposed over the random effects (Goicoa et al., 2018).

We will refer to this model as the Global model.
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Methodology

Scalable Bayesian model proposal

In this work, we extend the scalable Bayesian spatial model proposed by
Orozco-Acosta et al. (2021) based on the idea of “divide-and-conquer” so
that local spatio-temporal models can be simultaneously fitted.

Several scalable spatial models for high-dimensional areal count data are
already implemented in the R package bigDM, available at

https://github.com/spatialstatisticsupna/bigDM

Inference is fully Bayesian using the well-known integrated nested Laplace
approximation (INLA; Rue et al., 2009) technique through the R-INLA

package.

Parallel or distributed computation strategies can be performed to speed
up computations by using the future package (Bengtsson, 2020).
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Scalable Bayesian model proposal

Our modeling approach consists of three main steps:

Step 1

Divide the region
of interest into
D subdomains

Step 2

Estimate local
spatio-temporal

models using a fully
Bayesian approach

based on INLA

Step 3

Merge the results into a
unique inla object that

contains the posterior
marginal distributions

of the relative risks and
compute approximate

values of some Bayesian
model selection criteria
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Step 1: divide the data

Instead of considering global random effects whose correlation structures
are based on the whole spatial/temporal neighbourhood graphs of the
areal-time units, we propose to divide the data into D = Ds × Dt

subdomains, where Ds and Dt denote the number of spatial and temporal
partitions, respectively.

Extending the methodology described in Orozco-Acosta et al. (2021), we
define Disjoint and k-order neighbourhood models for estimating
spatio-temporal disease risks.
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Step 2: local spatio-temporal models

Disjoint model

- A partition of the spatio-temporal domain D = Ds ×Dt into D sub-domains
is defined, so that D =

⋃D
d=1 Dd where Dj ∩Dk = ∅ for all j 6= k.

- If we denote as Ait to the small area i in time period t, note that each
area-time unit Ait belongs to a single sub-domain.

k-order neighbourhood model

- Assuming independence between areas belonging to different sub-domains
could be very restrictive and it may lead to border effects

- We avoid this undesirable issue by adding neighbouring area-time units to
each partition of the spatial and/or temporal sub-domain Ds and Dt ,
respectively.
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Toy example: purely spatial partition (Dt = 1)

Subdomain 1 Subdomain 2 Subdomain 3 Subdomain 4

Figure 2: Toy example of a purely spatial partition using the disjoint and
1st/2nd-order neighbourhood models.
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Step 3: merge the results

Disjoint model

- The log-risk surface log r = (log r 1, . . . , log rD)
′

is just the union of the
posterior marginal estimates of each spatio-temporal sub-model.

k-order neighbourhood model

- Since multiple relative risk estimates are obtained for some Ait units, we
compute mixture distributions of the posterior probability density functions
estimated from the different local spatio-temporal models to obtain a single
posterior distribution for each rit .

- We use the conditional predictive ordinate (CPO), a diagnostic measure to
detect discrepant observations from a given model (Pettit, 1990), to
compute the weights of the mixture distribution.

CPOit = Pr(Oit = oit |o−it)

Approximations to model selection criteria such as DIC (Spiegelhalter
et al., 2002) and WAIC (Watanabe, 2010) are also derived.

Spatial Statistics Group 14/27

https://spatialstatisticsupna.github.io/


Introduction
Statistical models in space-time disease mapping

Scalable Bayesian model proposal
Results

Conclusions and further work
References

R package bigDM
Methodology

Toy example: mixture distribution
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Figure 3: Toy example of a mixture distribution of posterior marginal estimates of
relative risks.
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Simulation study

Data analysis: lung cancer mortality risks

We illustrate the models’s behaviour by estimating lung cancer mortality risks
in the S = 7907 municipalities of continental Spain during the period
1991-2015 (T=25).

Main problem: Computationally unfeasible to fit Type II and Type IV
interaction Global models

◦ Huge dimension of the spatio-temporal structure matrix

197 675× 197 675 (≈ 4x1010elements)

◦ High number of identifiability constraints over the spatio-temporal
interaction (≈ 8 000 constraints)

In contrast, we are able to fit our scalable model proposals reducing the
RAM/CPU memory usage and computational time substantially.
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Data analysis: lung cancer mortality risks

Table 1: Model selection criteria and computational time (in minutes) using the
simplified.laplace approximation strategy (R-INLA stable version 21.02.23).

Model Interaction D̄ pD DIC WAIC T.run T.merge T.total

Global Type I 333787 2984 336771 336802 663 − 663
Type II − − − − − − −
Type III 333573 2968 336541 336564 3845 − 3845
Type IV − − − − − − −

Disjoint Type I 332260 3999 336259 336267 10 6 16
Type II 332281 3801 336082 336151 218 6 224
Type III 332207 4015 336222 336267 22 6 27
Type IV 332237 3753 335990 336070 259 6 264

1st-order nb Type I 332222 3965 336187 336210 12 20 32
Type II 332236 3780 336016 336093 535 20 555
Type III 332399 3775 336174 336233 32 20 52
Type IV 332323 3614 335937 336020 625 20 644

Spatio-temporal models with BYM2 conditional autoregressive prior for space, first
order random walk prior for time and the four types of space-time interactions.

For the scalable model proposals, we divide the data into D = 47 sub-domains using the
provinces of Spain to define a purely spatial partition (Dt = 1)

Spatial Statistics Group 17/27

https://spatialstatisticsupna.github.io/


Introduction
Statistical models in space-time disease mapping

Scalable Bayesian model proposal
Results

Conclusions and further work
References

Data analysis: lung cancer mortality risks
Simulation study

Data analysis: lung cancer mortality risks
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Figure 4: Posterior median estimates of relative risks rit for the 1st-order
neighbourhood model considering a Type IV interaction.
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Data analysis: lung cancer mortality risks
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Figure 5: Posterior exceedence probabilities P(rit > 1|O) for 1st-order
neighbourhood and Type IV interaction model.
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Simulation study

A simulation study has been conducted to compare the performance of our
model’s proposals over the almost 8 000 municipalities of continental
Spain and T = 25 time periods.

A smooth risk surface is generated by sampling from a three-dimensional
P-spline with 20 equally spaced knots for longitude and latitude, and 6
equally spaced knots for time.

Then, simulate counts for each municipality and time point using a
Poisson distribution with mean µit = Eitrir , where the number of expected
cases Eit are fixed at value 10.

A total of 50 simulations have been generated.
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Simulation study
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Figure 6: True risk surfaces for the simulation study.
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Simulation study

Table 2: Average values of model selection criteria, mean absolute relative bias
(MARB) and mean relative root mean square error (MRRMSE).

Model Interaction DIC WAIC MARB MRRMSE
Global Type I 217393 217832 0.0684 0.0782

Type II − − − −
Type III 204930 204666 0.0165 0.0387
Type IV − − − −

Disjoint Type I 206536 206516 0.0322 0.0434
Type II 205934 205965 0.0281 0.0419
Type III 204929 204829 0.0203 0.0377
Type IV 204162 204151 0.0153 0.0331

1st-order nb Type I 206028 205972 0.0303 0.0416
Type II 205556 205560 0.0261 0.0404
Type III 204451 204314 0.0173 0.0352
Type IV 203856 203833 0.0133 0.0311

2nd-order nb Type I 206165 206093 0.0311 0.0423
Type II 205717 205706 0.0266 0.0413
Type III 204534 204370 0.0173 0.0356
Type IV 203883 203856 0.0134 0.0312
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Simulation study
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Figure 7: Average values of posterior median estimates of relative risks for 1st-order
neighbourhood and Type IV interaction model.
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Conclusions and further work

The “divide-and-conquer” strategy has been extensively used to analyse
big data in other contexts such as machine learning, usually using a
Bayesian approach to compute tractable posterior distributions (posterior
samples if MCMC methods are considered).

Adapting this idea to the context of disease mapping seems to be very
appropriate in practice, since CAR models induce spatial and/or temporal
local smoothness by means of neighbouring areas and time points.

Our scalable methodology proposal provides reliable risk estimates with a
substantial reduction in computational time when fitting Bayesian
hierarchical spatio-temporal models for high-dimensional data.

In our data analysis, purely spatial partitions have been considered
(Dt = 1) but spatio-temporal partitions could be also considered when
analyzing large-scale temporal data.
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Conclusions and future work

Although the methodology described here uses the INLA estimation
strategy, it could also be adapted to other Bayesian fitting techniques.

The methods and algorithms proposed in this work are being implemented
in the R package bigDM available at

https://github.com/spatialstatisticsupna/bigDM

Currently we are working on the development of scalable ecological
regression models taking into account the spatial and/or spatio-temporal
confounding issues between fixed and random effects (Adin et al., 2021).

We would like to further investigate other model approaches and
computational strategies to deal with large spatio-temporal datasets in
disease mapping.
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Spatio-temporal CAR models

The following prior distribution is assumed for the spatio-temporal interaction
random effect

δ ∼ N(0, [τδRδ]−)

where Rδ is the space-time structure matrix of dimension ST × ST obtained
as the Kronecker product of the corresponding spatial and temporal structure
matrices.

Table 3: Specification for the four possible types of space-time interaction.

Interaction Structure matrix Spatial correlation Temporal correlation

Type I Rδ = IT ⊗ IS − −
Type II Rδ = Rγ ⊗ IS − X
Type III Rδ = IT ⊗ Rξ X −
Type IV Rδ = Rγ ⊗ Rξ X X
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Identifiability constraints

Identifiability constraints for the different types of space-time interaction
effects in CAR models Goicoa et al. (2018).

Type I (Rδ = IT ⊗ IS ) :
S∑

i=1

ξi = 0,
T∑
t=1
γt = 0, and

S∑
i=1

T∑
t=1
δit = 0.

Type II (Rδ = Rγ ⊗ IS ) :
S∑

i=1

ξi = 0,
T∑
t=1
γt = 0, and

T∑
t=1
δit = 0, for i = 1, . . . , S.

Type III (Rδ = IT ⊗ Rξ) :
S∑

i=1

ξi = 0,
T∑
t=1
γt = 0, and

S∑
i=1

δit = 0, for t = 1, . . . ,T .

Type IV (Rδ = Rγ ⊗ Rξ) :
S∑

i=1

ξi = 0,
T∑
t=1
γt = 0, and

T∑
t=1
δit = 0, for i = 1, . . . , S,

S∑
i=1

δit = 0, for t = 1, . . . ,T .
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Simulation study

We evaluate models’ performance in terms of relative risk estimates by
computing the mean absolute relative bias (MARB) and mean relative root
mean square error (MRRMSE), defined as

MARB = 1
ST

S∑
i=1

T∑
t=1

1
100

∣∣∣∣100∑
l=1

r̂ lit−rit
rit

∣∣∣∣ ,
MRRMSE = 1

ST

S∑
i=1

T∑
t=1

√
1

100

100∑
l=1

(
r̂ lit−rit
rit

)2

,

where rit is the true generated risk, and r̂ lit is the posterior median estimate of
the relative risk for arean unit i and time period t in the l-th simulation.
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