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STATISTICAL DEPTH

For Borel probability measures P
(
Rd) the statistical depth is a

mapping
D : Rd × P

(
Rd

)
→ [0, 1] : (x,P) 7→ D(x;P).
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HALFSPACE DEPTH

Halfspace depth or Tukey depth (Tukey, 1975) of x ∈ Rd

hD(x;P) = inf
H∈H(x)

P (H) .
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HALFSPACE DEPTH

hD (x; {X1, . . . , Xn}) =
# of observations in a halfspace that contains x

n
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HALFSPACE/SIMPLICIAL DEPTH CENTRAL REGIONS

Halfspace depth contours (left) and simplicial depth contours (right)

hD(x;P) = inf
H∈H(x)

P (H) , sD(x;P) = P (x ∈ S [X1, . . . , Xd+1]) .
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DEPTH: DESIRED PROPERTIES (INFORMALLY)

A depth D : Rd × P
(
Rd) → [0, 1] : (x,P) 7→ D(x;P) should be

(Zuo and Serfling, 2000; Serfling, 2006):

(P1) Invariant for affine transforms;

(P2) Maximal at the center of symmetry of P;

(P3) Decreasing along rays from the center;

(P4) Vanishing as x goes to infinity;

(P5) Semi-continuous in x;

(P6) Continuous in P;

and sometimes also

(P3’) Quasi-concave in x: All upper level sets of D(·;P) are convex.

The depth then ranks the data reasonably well.
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APPLICATION: BAGPLOT

Bagplot — depth-based boxplot in Rd (Rousseeuw et al., 1999)
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FUNCTIONAL DATA

X ∼ P ∈ P (F) and X1, . . . , Xn i.i.d. from P. Consider the depth of
functional observations w.r.t. P (or Pn the empirical measure of
X1, . . . , Xn)

D : F × P (F) → [0, 1].
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HALFSPACE DEPTH IN R

hD1(u;Q) = min {FQ(u), 1− FQ(u−)} ≈ 1/2− |1/2− FQ(u)|
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DEPTH IN FUNCTION SPACES

For F a Banach space and X ∼ P ∈ P (F), what is the depth of x ∈ F?

D : F × P (F) → [0, 1].

• For the halfspace depth, only the linear structure of Rd is needed:

hD(x;P) = inf
u∈Rd

P
({
y ∈ Rd : 〈y,u〉 ≤ 〈x,u〉

})
= inf

u∈Rd
hD1

(
〈x,u〉 ;P⟨X,u⟩

)
.

• The simplicial depth in Rd depends on d, the dimension of the
space.
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DEPTH IN FUNCTION SPACES

For F a Banach space and X ∼ P ∈ P (F), what is the depth of x ∈ F?

D : F × P (F) → [0, 1].

• Functional halfspace depth: for F∗ the dual space of F
(Dutta et al., 2011)

hD(x;P) = inf
φ∈F∗

P ({y ∈ F : φ (y) ≤ φ(x)})

= inf
φ∈F∗

hD1
(
φ(x);Pφ(X)

)
.

• The simplicial depth does not work directly in function spaces.

Note: An extension of the simplicial depth to functional data is the band depth.

(López-Pintado and Romo, 2009)
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FUNCTIONAL HALFSPACE DEPTH IN L2 (T )

Each functional datum lives in its own dimension:

Observation
For a random sample X1, . . . , Xn of truly infinite-dimensional
functional data, Xn lies outside of the convex hull of X1, . . . , Xn−1,
almost surely.

The Hahn-Banach theorem then implies that the sample functional
halfspace depth is constant zero, P-almost everywhere.

Observation
The functional halfspace depth degenerates.
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HALFSPACE DEPTH DEGENERATES

For (certain) Gaussian processes P ∈ P (F) we have that
(Chakraborty and Chaudhuri, 2013)

hD (x;P) = inf
φ∈F∗

hD1
(
φ(x);Pφ(X)

)
= 0 for P-almost all x ∈ F .

Also other functional depths, e.g. the projection depths (Zuo and
Serfling, 2000), degenerate too.

Condition 0. Depth should not degenerate. That is, it is not allowed
that for some P ∈ P (F) we have D(x;P) = 0 for P-almost all x ∈ F .

Ô Restrict the set of projections in hD from the dual F∗ to a smaller,
but still representative and well interpretable subset.
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INTEGRATED DEPTHS

Average depth of a functional value
(Fraiman and Muniz, 2001; Cuevas and Fraiman, 2009; López-Pintado and Romo, 2009)

FD (x;P) =
∫
T
D1(x(t),Pt) d t, D1(u;Q) = 1/2− |1/2− FQ(u)| .
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INFIMAL DEPTHS

Smallest depth of a functional value (Mosler, 2013; Narisetty and Nair, 2016)

ID (x;P) = inf
t∈T

D1 (x(t);Pt) , D1(u;Q) = 1/2− |1/2− FQ(u)| .
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FUNCTIONAL DEPTH

Basic types of depth for functional data:

• integrated depth

FD (x;P) =
∫
T
D1(x(t),Pt) d t,

• infimal depth
ID (x;P) = inf

t∈T
D1 (x(t);Pt) .
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GENERAL FUNCTIONAL DEPTH

For a Banach space F , P ∈ P (F), Φ ⊂ F∗, and λ a measure on Φ:

• integrated depth

FD (x;P) =
∫
Φ

D1(φ(x),Pφ(X)) dλ(φ),

• infimal depth
ID (x;P) = inf

φ∈Φ
D1

(
φ(x),Pφ(X)

)
.

The set Φ ⊂ B∗ is typically the collection of evaluation functionals

{φt : x 7→ x(t) : t ∈ T } ,

but not necessarily so. λ can be the Lebesgue measure on T .
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DEGENERACY PROBLEM

Condition 0. Depth should not degenerate. That is, it is not allowed
that D(x;P) = 0 for P-almost all x ∈ F for any P ∈ P (F).

The integrated depth does not degenerate, but the infimal depth
almost does.

Example: Consider X ∼ P ∈ P (C([0, 1])) given as the linear
interpolant of

• X(0) = 0, and
• X(1/m) = Bernoulli(1/2)/m independent for m = 1, 2, . . . .

Then ID(x;Pn) = 0 for P-almost all x ∈ C([0, 1]), almost surely.
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INFIMAL DEPTHS: DEGENERACY PROBLEM

For X ∼ P our randomly jumping function and any x ∈ C([0, 1])

ID(x;P) ≥ 1/4× I {0 ≤ x(t) ≤ t for all t ∈ [0, 1]}
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INFIMAL DEPTHS: DEGENERACY PROBLEM

For X1, . . . , Xn a random sample from P with empirical measure Pn

ID(x;Pn) = 0 for P-almost all x ∈ C([0, 1]).
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INFIMAL DEPTHS: A NEW DEGENERACY PROBLEM

In our example, for P-almost any x ∈ C([0, 1]) with 0 ≤ x(t) ≤ t for all
t ∈ [0, 1] we have

ID(x;P) ≥ 1/4,

but
ID(x;Pn) = 0 for all n = 1, 2, . . . , almost surely.

Ô The estimator of the depth does not work, i.e.

lim
n→∞

ID(x;Pn) 6= ID(x;P).

Condition 1. The depth must possess a consistent sample version, at
least for reasonable distributions.
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DEPTH DISTRIBUTION

Consider the depth distribution of x ∈ L2 (T ), that is the law of

DPx : (T ,B (T ) , λ) → [0, 1] : t 7→ hD (x(t);Pt)

being a random variable on T .

• The integrated depth is the mean of DPx

FD(x;P) =
∫
T
hD (x(t);Pt) dλ(t) = EDPx .

• The infimal depth is the (essential) infimum of Dx

ID(x;P) = inf
t∈T

hD (x(t);Pt) ,

that is the lower end-point of the support of DPx .
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DEPTH DISTRIBUTION

The depth distribution of x ∈ L2 (T ) w.r.t. the random sample

DPx : (T ,B (T ) , λ) → [0, 1] : t 7→ hD (x(t);Pt)

Histogram of D
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DEPTH DISTRIBUTION
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DEPTH DISTRIBUTION
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ADAPTIVE FEATURE CHOICE: DEPTH DISTRIBUTION

The k-integrated depth with k ∈ R \ {0}

Dk(x;P) =
(∫

T
(hD(x(t);Pt) + 1/2)k dλ(t)

)1/k
− 1/2

=
(
E
(
DPx + 1/2

)k)1/k − 1/2

is, basically, the k-th moment of the depth distribution of x. We
obtain a family of depths

• for k = 1 the usual integrated depth;
• as k→ −∞ a version of the infimal depth;
• choice of k allows us to fine tune in practice.

(Nagy, Helander, Van Bever, Viitasaari, and Ilmonen, 2021)

32



TRAJECTORIES OF THE k-INTEGRATED DEPTHS

The trajectories k 7→ Dk(x;P) =
(
E
(
DPx + 1/2

)k)1/k − 1/2
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GENERAL FUNCTIONAL DEPTHS?

One can choose any (location) parameter L of the depth distribution

DL(x;P) = L(DPx )

to obtain a custom tailored depth functional. Examples are

• quantiles,
• trimmed means,
• M-estimators...

Or integrated quantiles for q ∈ (0, 1) and Fx,P the c.d.f. of DPx

L(DPx ) =
∫ q

0
F−1x,P(u) du.

(Work in progress with López-Pintado, 2021+)

The resulting depths possess quite different properties.

Case in point: Sample version consistency and Condition 1.
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A THEORETICAL ISSUE: CONSISTENCY

Let Pn ∈ P (F) be the (random) empirical measure of a random
sample X1, . . . , Xn from P.

A depth D on space F is

• consistent if

D(x;Pn)
a.s.−−−→
n→∞

D(x;P) for all x ∈ F ;

• uniformly consistent if

sup
x∈F

|D(x;Pn)− D(x;P)| a.s.−−−→
n→∞

0.

Ô In F = Rd, the halfspace / simplicial depth is uniformly consistent
(empirical processes and the Vapnik-Červonenkis theory).

Ô In function spaces uniform consistency requires new theories.
Ô Functional depths are often not consistent uniformly.
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INFIMAL (QUANTILE) DEPTHS ARE NOT CONSISTENT

ID is not consistent for, e.g., P the Wiener measure.
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ID can be shown to be consistent under more restrictive conditions.
(Gijbels and Nagy, 2015)
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UNIFORM CONSISTENCY OF GENERAL DEPTHS

Theorem (Nagy and López-Pintado, 2021+)
Suppose that
• F = C(T ), and
• the functional L : P (T ) → [0, 1] is uniformly continuous for the weak
topology on P (T ).

Then the general functional depth based on L is uniformly consistent.

Corollary

• All (k-)integrated depths are uniformly consistent over F , for any
P ∈ P (F), for both F = L2 (T ) and F = C(T ). (Nagy et al., 2016; 2021)

• All integrated quantile depths are uniformly consistent over C(T ),
for P ∈ P (C(T )) with smooth marginals. (Nagy and López-Pintado, 2021+)
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GENERAL FUNCTIONAL DEPTH: PROPERTIES

Theoretical properties of general functional depths, under
appropriate assumptions on L : P (T ) → [0, 1]:

• Non-degeneracy (Condition 0), including quantitative versions;
• Maximality at the coordinate-wise median, reachable by
continuous functions;

• Invariance and monotonicity properties;
• (Semi-)Continuity in both x ∈ F and P ∈ P (F);
• Uniform consistency also for imperfectly observed functional data,
multivariate functional data, image and video data.

All this is true for both (k-)integrated depths and quantile integrated
depths. (Nagy et al., 2016, 2021; Nagy and López-Pintado, 2021+)
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DEPTH (IN Rd) IS NOT FOR MIXTURES

The depth suits well only for analyzing unimodal distributions
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LOCAL/DENSITY-LIKE DEPTHS

One further depth for functional data:

• h-depth (Cuevas et al., 2006)

Dκ (x;P) = EX∼P [κ(‖x− X‖)]

estimated by

Dκ(x;Pn) = n−1
n∑
i=1

κ(‖x− Xi‖).

Here, κ : [0,∞) → [0, 1] is a continuous, non-increasing function
with limu→∞ κ(u) = 0.

Ô A density-like depth allowing for multiple “modes” in P.
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h-DEPTH IN MACHINE LEARNING

Observation (Wynne and Nagy, 2021)
For “typical” choices of κ, the h-depth is equivalent with a special
kernel mean embedding in an appropriate RKHS.

Consequences:

• Uniform consistency including rates of convergence;
• Consistency/rates of convergence of the induced deepest function;
• Uniform distributional asymptotics;
• All this also for imperfectly observed, or dependent data.
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h-DEPTH: FURTHER CONSEQUENCES

The characterization property:
For any P 6= Q ∈ P (F) there exists x ∈ F with Dκ(x;P) 6= Dκ(x;Q).

(Random) functional depths:
Some random functional depths (Cuevas et al., 2007, Cuesta-Albertos and
Nieto-Reyes, 2008) admit explicit forms, i.e. they do not need to be
approximated.

43



CONCLUSIONS

What we know:

• Functional depth is a very active field of FDA,
• with many potential applications,
• and many depths have been proposed.
• The selection of a depth is crucial, and must be problem-specific.
• Theoretical properties of the depth must be observed.

Open problems:

Ô Desiderata for the depth
(affine invariance? convexity in function spaces?)

Ô Statistical properties (finer asymptotics, bootstrap).
Ô Applications to analysis?
Ô How to choose a depth?
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