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STATISTICAL DEPTH

For Borel probability measures P (Rd) the statistical depth is a

mapping
D:RIx P <R”> —[0,1]: (x, P) = D(x; P).
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HALFSPACE DEPTH

Halfspace depth or Tukey depth (Tukey, 1975) of x € RY

ho(x;P) = inf P(H).
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HALFSPACE DEPTH

_ #of observations in a halfspace that contains x
n
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HALFSPACE /SIMPLICIAL DEPTH CENTRAL REGIONS

Halfspace depth contours (left) and simplicial depth contours (right)

hD(x;P) = inf P(H)., SD(X;P) = P(X € S[X1, ..., Xas1]) -




DEPTH: DESIRED PROPERTIES (INFORMALLY)

A depth D: R? x P (RY) — [0,1]: (X, P) — D(x; P) should be
(Zuo and Serfling, 2000; Serfling, 2006):

(P1) Invariant for affine transforms;

(P2) Maximal at the center of symmetry of P;

(P3) Decreasing along rays from the center:

(P4) Vanishing as x goes to infinity:;

(P5) Semi-continuous in x;

(P6) Continuous in P;
and sometimes also

(P3") Quasi-concave in x: All upper level sets of D(-; P) are convex.

The depth then ranks the data reasonably well.



APPLICATION: BAGPLOT

Bagplot — depth-based boxplot in R? (Rousseeuw et al., 1999)
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FUNCTIONAL DATA

X~PeP(F)and Xq,...,X, i.i.d. from P. Consider the depth of
functional observations w.rt. P (or P, the empirical measure of
X1, Xn)

D: FxP(F)—[0,1].




HALFSPACE DEPTH IN R

hD+1(u; Q) = min {Fq(u),1—Fq(u=)} =~ 1/2 = [1/2 — Fq(u)|
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DEPTH IN FUNCTION SPACES

For F a Banach space and X ~ P € P (F), what is the depth of x € F?
D: FxP(F)—[0,1].
e For the halfspace depth, only the linear structure of RY is needed:

hD(x; P) = inf P({yeRd: ly, u) < (x, u>})

uUeR?
= uien]Igd hD, (<X, U> ; P(X,u}) .

e The simplicial depth in RY depends on d, the dimension of the
space.



DEPTH IN FUNCTION SPACES

For F a Banach space and X ~ P € P (F), what is the depth of x € F?
D: FxP(F)—[0,1].

e Functional halfspace depth: for F* the dual space of F
(Dutta et al., 2011)

hD(x;P)= inf P({y€F: o) = ()}

= Lplen]'-F_* hD1 ((p(X); 'DLP(X)) .
e The simplicial depth does not work directly in function spaces.

Note: An extension of the simplicial depth to functional data is the band depth.

(Lopez-Pintado and Romo, 2009)
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FUNCTIONAL HALFSPACE DEPTH IN L% (T)

Each functional datum lives in its own dimension:

Observation

For a random sample X, ..., X, of

functional data, X, lies outside of the convex hull of X,...,Xn_1,
almost surely.

The Hahn-Banach theorem then implies that the sample functional
halfspace depth is constant zero, P-almost everywhere.

Observation
The functional halfspace depth degenerates.



HALFSPACE DEPTH DEGENERATES

For (certain) Gaussian processes P € P (F) we have that
(Chakraborty and Chaudhuri, 2013)

hD (x; P) = Wien]fm hD1 (p(X); Pyxy) = 0 for P-almost all x € F.

Also other functional depths, e.g. the projection depths (zuo and
Serfling, 2000), degenerate too.

Depth should not degenerate. That is, it is not allowed
that for some P € P (F) we have D(x; P) = 0 for P-almost all x € F.

-> Restrict the set of projections in hD from the dual F* to a smaller,
but still representative and well interpretable subset.



INTEGRATED DEPTHS

Average depth of a functional value

(Fraiman and Muniz, 2007; Cuevas and Fraiman, 2009; Lopez-Pintado and Romo, 2009)

FD (x; P) = / Di(x(t),P)dt,  Da(u;Q) =1/2 — [1/2 — Fo(u)] .
JT

E
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INFIMAL DEPTHS

Smallest depth of a functional value (Mosler, 2013; Narisetty and Nair, 2016)

ID(x;P) = jnf D1 (x(t):P),  Di(usQ) =1/2 = [1/2 = Fo(u)].
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FUNCTIONAL DEPTH

Basic types of depth for functional data:

e integrated depth
FD (x; P):/ D1(x(t), Py)dt,
T

e infimal depth
ID (x; P) = inf Dq (x(t); Py) .
teT

21



GENERAL FUNCTIONAL DEPTH

For a Banach space F, P € P(F), ® C F* and A a measure on ¢:

e integrated depth

D(6:P) = [ Dr(e(x).Poro) dA(),

o infimal depth
ID(x;P) = inf D1 (e(X), Pory) -
The set ® c B* is typically the collection of evaluation functionals
{ot: x—=>Xx(t): teT},

but not necessarily so. A can be the Lebesgue measure on 7.
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DEGENERACY PROBLEM

Depth should not degenerate. That is, it is not allowed
that D(x; P) = 0 for P-almost all x € F for any P € P (F).

The , but the infimal depth
almost does.

Example: Consider X ~ P € P (C([0,1])) given as the linear
interpolant of

e X(0) =0, and
e X(1/m) = Bernoulli(1/2)/m independent form =1,2,....

Then ID(x; P,) = 0 for P-almost all x € C([0, 1]), almost surely.
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INFIMAL DEPTHS: DEGENERACY PROBLEM

For X ~ P our randomly jumping function and any x € C([0,1])

ID(x; P) >1/4 x T{0 < x(t) < tforall t € [0,1]}

2%



INFIMAL DEPTHS: DEGENERACY PROBLEM

For Xi,...,X, a random sample from P with empirical measure P,

ID(x; P,) = 0 for P-almost all x € C([0,1]).
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INFIMAL DEPTHS: A NEW DEGENERACY PROBLEM

In our example, for P-almost any x € C([0, 1]) with 0 < x(t) < t for all
t € [0,1] we have

ID(x; P) > 1/4,
but
ID(x; P,) =0foralln=1,2,..., almost surely.
- The estimator of the depth ,l.e.

lim 1D(x; P,) # ID(x; P).

n—oo

The depth must possess a consistent sample version, at
least for reasonable distributions.
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DEPTH DISTRIBUTION

Consider the depth distribution of x € L2 (7)), that is the law of
DY: (T,B(T),\) — [0,1]: t+— hD(x(t); Pr)
being a random variable on 7.

e The integrated depth is the mean of DY
FD(x; P) = / hD (x(t); Py) d \(t) = EDY.
T

e The infimal depth is the (essential) infimum of D,
ID(x; P) = tlgfth (x(); Py),

that is the lower end-point of the support of Df.
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DEPTH DISTRIBUTION

The depth distribution of x € L2(7") w.rt. the random sample
DY: (T,B(T),\) — [0,1]: t+ hD(x(t); Pr)

Histogram of D
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DEPTH DISTRIBUTION
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ADAPTIVE FEATURE CHOICE: DEPTH DISTRIBUTION

The k-integrated depth with k € R\ {0}

1/k
Dk(x; P) = </T(hD(X(t); Py + 1/2)k d/\(t)> —-1/2

= (E (D§+1/2)k)1/k—1/2

is, basically, the k-th moment of the depth distribution of x. We
obtain a family of depths

e for k =1the usual integrated depth;
e as kR — —oo a version of the infimal depth;
e choice of k allows us to fine tune in practice.

(Nagy, Helander, Van Bever, Viitasaari, and Ilmonen, 2021)
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TRAJECTORIES OF THE R-INTEGRATED DEPTHS

1/k
The trajectories k — DR(x; P) = (E (D + 1/2)k) —1)2

e
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o

T T T T
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K-Depth as a function of K
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GENERAL FUNCTIONAL DEPTHS?

One can choose any (location) parameter L of the depth distribution
Di(x; P) = L(DY)
to obtain a custom tailored depth functional. Examples are

e quantiles,
e trimmed means,
o M-estimators...

Or integrated quantiles for g € (0,1) and Fyp the c.d.f. of DY

L(DF) = /q Fep(u)du.

0

(Work in progress with Lopez-Pintado, 2021+)

The resulting depths possess quite different properties.

Case in point: Sample version consistency and
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A THEORETICAL ISSUE: CONSISTENCY

Let P, € P (F) be the (random) empirical measure of a random
sample Xq,...,X, from P.

A depth D on space F is
e consistent if

D(x; Py) % D(x;P) forallx e F;
o uniformly consistent if

sup [D(x; Pp) — D(x; P)| == 0.

XeF =es

= In F =RY the halfspace / simplicial depth is uniformly consistent
(empirical processes and the Vapnik-Cervonenkis theory).

= In function spaces uniform consistency requires new theories.

- Functional depths are often not consistent uniformly.
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INFIMAL (QUANTILE) DEPTHS ARE NOT CONSISTENT

ID is not consistent for, e.g,, P the Wiener measure.

ID can be shown to be consistent under more restrictive conditions.
(Gijbels and Nagy, 2015)
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UNIFORM CONSISTENCY OF GENERAL DEPTHS

Theorem (Nagy and Lopez-Pintado, 2021+)
Suppose that

e F=C(T), and

e thefunctionalL: P(T) — [0,1]is uniformly continuous for the weak
topology on P (T).
Then the general functional depth based on L is uniformly consistent.

Corollary

o All are uniformly consistent over F, for any
P € P (F), for both F = L2 (T) and F = C(T). (Nagy et al, 2016; 2021)

o All are uniformly consistent over C(T),

for P € P(C(T)) with smooth marginals. (Nagy and Lépez-Pintado, 2021+)
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GENERAL FUNCTIONAL DEPTH: PROPERTIES

Theoretical properties of general functional depths, under
appropriate assumptions on L: P (7T) — [0,1]:
e Non-degeneracy ( ), including quantitative versions;

e Maximality at the coordinate-wise median, reachable by
continuous functions;

e Invariance and monotonicity properties;
e (Semi-)Continuity in both x € F and P € P (F);

e Uniform consistency also for imperfectly observed functional data,
multivariate functional data, image and video data.

All this is true for both (k-)integrated depths and quantile integrated
depths. (Nagy et al, 2016, 2021; Nagy and Lopez-Pintado, 2021+)
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DEPTH (IN Rd) IS NOT FOR MIXTURES

The depth suits well only for analyzing unimodal distributions
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DEPTH (IN RY) IS NOT FOR MIXTURES

The depth suits well only for analyzing unimodal distributions
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LOCAL/DENSITY-LIKE DEPTHS

One further depth for functional data:

° h—depth (Cuevas et al,, 2006)
Dy (X; P) = Exp [(IIx — X|[)]
estimated by

w(X; Pn) = 12 (I = Xil))-

Here, x: [0,00) — [0, 1] is @ continuous, non-increasing function
with limy o s(u) = 0.

- A density-like depth allowing for multiple “modes” in P.
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h-DEPTH IN MACHINE LEARNING

Observation (Wynne and Nagy, 2021)

For “typical” choices of «, the h-depth is equivalent with a special
in an appropriate RKHS.

Consequences:

e Uniform consistency including rates of convergence;

e Consistency/rates of convergence of the induced deepest function;
e Uniform distributional asymptotics;

e All this also for imperfectly observed, or dependent data.
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h-DEPTH: FURTHER CONSEQUENCES

Forany P # Q € P (F) there exists x € F with D (x; P) # D.(x; Q).

Some random functional depths (Cuevas et al, 2007, Cuesta-Albertos and
Nieto-Reyes, 2008) admit explicit forms, i.e. they do not need to be
approximated.
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CONCLUSIONS

What we know:

e Functional depth is a very active field of FDA,

with many potential applications,

and many depths have been proposed.
e The , and must be problem-specific.
e Theoretical properties of the depth must be observed.
Open problems:
- Desiderata for the depth
(affine invariance? convexity in function spaces?)
-> Statistical properties (finer asymptotics, bootstrap).
- Applications to analysis?
- How to choose a depth?
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