FUNCTIONAL DEPTH: RECENT PROGRESS AND PERSPECTIVES

Stanislav Nagy

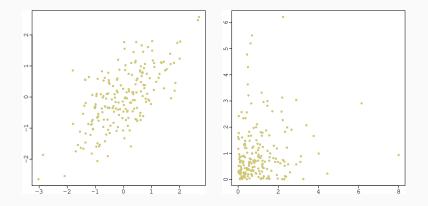
Valladolid 2021

Charles University Department of Probability and Mathematical Statistics

STATISTICAL DEPTH

For Borel probability measures $\mathcal{P}\left(\mathbb{R}^{d}
ight)$ the statistical depth is a mapping

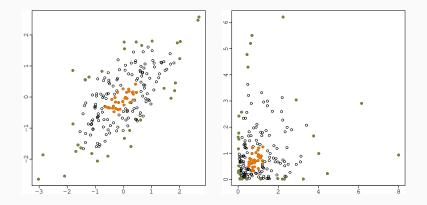
 $D \colon \mathbb{R}^d \times \mathcal{P}\left(\mathbb{R}^d\right) \to [0,1] \colon (x,P) \mapsto D(x;P).$



STATISTICAL DEPTH

For Borel probability measures $\mathcal{P}\left(\mathbb{R}^{d}
ight)$ the statistical depth is a mapping

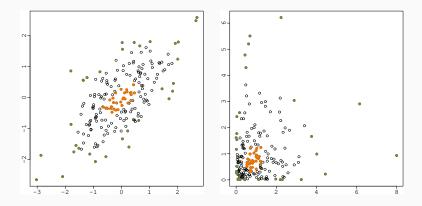
 $D: \mathbb{R}^d \times \mathcal{P}\left(\mathbb{R}^d\right) \to [0,1]: (x,P) \mapsto D(x;P).$



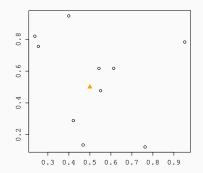
HALFSPACE DEPTH

Halfspace depth or Tukey depth (Tukey, 1975) of $x \in \mathbb{R}^d$

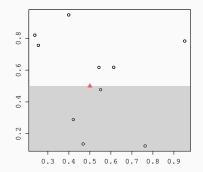
$hD(x; P) = \inf_{H \in \mathcal{H}(x)} P(H).$



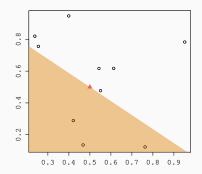
 $hD(x; \{X_1, \ldots, X_n\}) = \frac{\# \text{ of observations in a halfspace that contains } x}{n}$



 $hD(x; \{X_1, \ldots, X_n\}) = \frac{\# \text{ of observations in a halfspace that contains } x}{n}$



$hD(x; \{X_1, \dots, X_n\}) = \frac{\# \text{ of observations in a halfspace that contains } x}{n}$



HALFSPACE/SIMPLICIAL DEPTH CENTRAL REGIONS

Halfspace depth contours (left) and simplicial depth contours (right)

 $SD(x; P) = P(x \in S[X_1, ..., X_{d+1}]).$ $hD(x; P) = \inf_{H \in \mathcal{H}(x)} P(H),$ \sim 0 0 7 --2 -2

DEPTH: DESIRED PROPERTIES (INFORMALLY)

A depth $D: \mathbb{R}^d \times \mathcal{P}(\mathbb{R}^d) \to [0,1]: (x, P) \mapsto D(x; P)$ should be

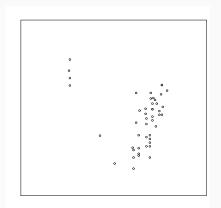
(Zuo and Serfling, 2000; Serfling, 2006):

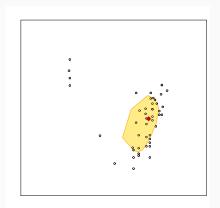
- (P1) Invariant for affine transforms;
- (P2) Maximal at the center of symmetry of P;
- (P3) Decreasing along rays from the center;
- (P4) Vanishing as x goes to infinity;
- (P5) Semi-continuous in x;
- (P6) Continuous in P;

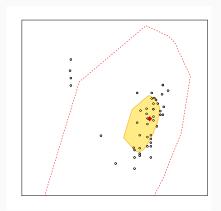
and sometimes also

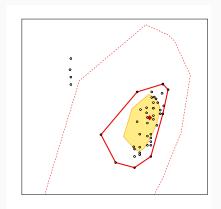
(P3') Quasi-concave in x: All upper level sets of $D(\cdot; P)$ are convex.

The depth then ranks the data reasonably well.





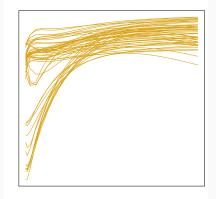




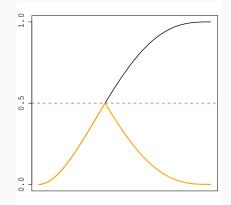
FUNCTIONAL DATA

 $X \sim P \in \mathcal{P}(\mathcal{F})$ and X_1, \ldots, X_n i.i.d. from *P*. Consider the depth of functional observations w.r.t. *P* (or *P_n* the empirical measure of X_1, \ldots, X_n)

 $D \colon \mathcal{F} \times \mathcal{P}(\mathcal{F}) \to [0,1].$



 $hD_1(u; Q) = \min \{F_Q(u), 1 - F_Q(u-)\} \approx 1/2 - |1/2 - F_Q(u)|$



For \mathcal{F} a Banach space and $X \sim P \in \mathcal{P}(\mathcal{F})$, what is the depth of $x \in \mathcal{F}$?

 $D\colon \mathcal{F}\times \mathcal{P}\left(\mathcal{F}\right)\to [0,1].$

• For the halfspace depth, only the linear structure of \mathbb{R}^d is needed:

$$hD(x; P) = \inf_{u \in \mathbb{R}^d} P\left(\left\{y \in \mathbb{R}^d : \langle y, u \rangle \le \langle x, u \rangle\right\}\right)$$
$$= \inf_{u \in \mathbb{R}^d} hD_1\left(\langle x, u \rangle; P_{\langle x, u \rangle}\right).$$

• The simplicial depth in \mathbb{R}^d depends on *d*, the dimension of the space.

For \mathcal{F} a Banach space and $X \sim P \in \mathcal{P}(\mathcal{F})$, what is the depth of $x \in \mathcal{F}$?

 $D\colon \mathcal{F}\times \mathcal{P}\left(\mathcal{F}\right)\to [0,1].$

• Functional halfspace depth: for \mathcal{F}^* the dual space of \mathcal{F} (Dutta et al., 2011)

$$hD(x; P) = \inf_{\varphi \in \mathcal{F}^*} P\left(\{y \in \mathcal{F} : \varphi(y) \le \varphi(x)\}\right)$$
$$= \inf_{\varphi \in \mathcal{F}^*} hD_1\left(\varphi(x); P_{\varphi(x)}\right).$$

• The simplicial depth does not work directly in function spaces.

Note: An extension of the simplicial depth to functional data is the band depth. (López-Pintado and Romo, 2009) Each functional datum lives in its own dimension:

Observation

For a random sample X_1, \ldots, X_n of truly infinite-dimensional functional data, X_n lies outside of the convex hull of X_1, \ldots, X_{n-1} , almost surely.

The Hahn-Banach theorem then implies that the sample functional halfspace depth is constant zero, *P*-almost everywhere.

Observation The functional halfspace depth degenerates. For (certain) Gaussian processes $P \in \mathcal{P}(\mathcal{F})$ we have that (Chakraborty and Chaudhuri, 2013)

 $hD(x; P) = \inf_{\varphi \in \mathcal{F}^*} hD_1(\varphi(x); P_{\varphi(X)}) = 0 \text{ for } P\text{-almost all } x \in \mathcal{F}.$

Also other functional depths, e.g. the projection depths (Zuo and Serfling, 2000), degenerate too.

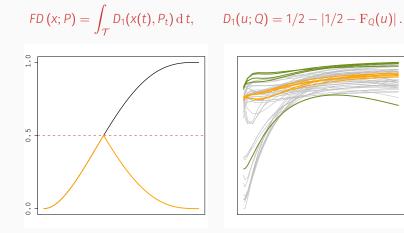
Condition 0. Depth should not degenerate. That is, it is not allowed that for some $P \in \mathcal{P}(\mathcal{F})$ we have D(x; P) = 0 for *P*-almost all $x \in \mathcal{F}$.

→ Restrict the set of projections in hD from the dual \mathcal{F}^* to a smaller, but still representative and well interpretable subset.

INTEGRATED DEPTHS

Average depth of a functional value

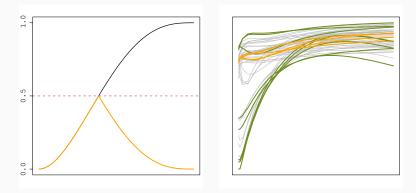
(Fraiman and Muniz, 2001; Cuevas and Fraiman, 2009; López-Pintado and Romo, 2009)



INFIMAL DEPTHS

Smallest depth of a functional value (Mosler, 2013; Narisetty and Nair, 2016)

 $ID(x; P) = \inf_{t \in \mathcal{T}} D_1(x(t); P_t), \qquad D_1(u; Q) = 1/2 - |1/2 - F_Q(u)|.$



Basic types of depth for functional data:

• integrated depth

$$FD(x; P) = \int_{\mathcal{T}} D_1(x(t), P_t) \,\mathrm{d}\, t,$$

• infimal depth

 $ID(x; P) = \inf_{t \in \mathcal{T}} D_1(x(t); P_t).$

For a Banach space \mathcal{F} , $P \in \mathcal{P}(\mathcal{F})$, $\Phi \subset \mathcal{F}^*$, and λ a measure on Φ :

• integrated depth

$$FD(x; P) = \int_{\Phi} D_1(\varphi(x), P_{\varphi(X)}) \,\mathrm{d}\,\lambda(\varphi),$$

• infimal depth

$$ID(X; P) = \inf_{\varphi \in \Phi} D_1(\varphi(X), P_{\varphi(X)}).$$

The set $\Phi \subset B^*$ is typically the collection of evaluation functionals

$$\{\varphi_t\colon \mathsf{X}\mapsto\mathsf{X}(t)\colon t\in\mathcal{T}\}\,,\,$$

but not necessarily so. λ can be the Lebesgue measure on \mathcal{T} .

Condition 0. Depth should not degenerate. That is, it is not allowed that D(x; P) = 0 for *P*-almost all $x \in \mathcal{F}$ for any $P \in \mathcal{P}(\mathcal{F})$.

The integrated depth does not degenerate, but the infimal depth *almost* does.

Example: Consider $X \sim P \in \mathcal{P}(\mathcal{C}([0, 1]))$ given as the linear interpolant of

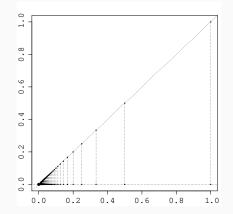
- X(0) = 0, and
- X(1/m) = Bernoulli(1/2)/m independent for m = 1, 2, ...

Then $ID(x; P_n) = 0$ for P-almost all $x \in C([0, 1])$, almost surely.

INFIMAL DEPTHS: DEGENERACY PROBLEM

For $X \sim P$ our randomly jumping function and any $x \in C([0, 1])$

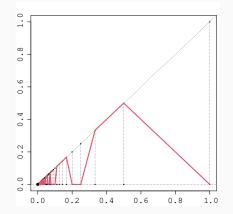
 $ID(x; P) \ge 1/4 \times \mathbb{I}\left\{0 \le x(t) \le t \text{ for all } t \in [0, 1]\right\}$



INFIMAL DEPTHS: DEGENERACY PROBLEM

For X_1, \ldots, X_n a random sample from P with empirical measure P_n

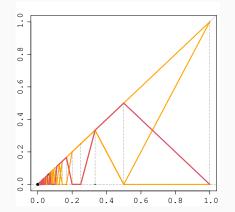
 $ID(x; P_n) = 0$ for *P*-almost all $x \in C([0, 1])$.



INFIMAL DEPTHS: DEGENERACY PROBLEM

For X_1, \ldots, X_n a random sample from P with empirical measure P_n

 $ID(x; P_n) = 0$ for *P*-almost all $x \in C([0, 1])$.



In our example, for *P*-almost any $x \in C([0, 1])$ with $0 \le x(t) \le t$ for all $t \in [0, 1]$ we have

$$ID(x; P) \geq 1/4,$$

but

 $ID(x; P_n) = 0$ for all n = 1, 2, ..., almost surely.

 \rightarrow The estimator of the depth does not work, i.e.

 $\lim_{n\to\infty} ID(x; P_n) \neq ID(x; P).$

Condition 1. The depth must possess a consistent sample version, at least for *reasonable* distributions.

Consider the depth distribution of $x \in L^2(\mathcal{T})$, that is the law of

 D_{X}^{P} : $(\mathcal{T}, \mathcal{B}(\mathcal{T}), \lambda) \rightarrow [0, 1]$: $t \mapsto hD(x(t); P_{t})$

being a random variable on \mathcal{T} .

• The integrated depth is the mean of D_x^P

$$FD(x; P) = \int_{\mathcal{T}} hD(x(t); P_t) \, \mathrm{d} \, \lambda(t) = \mathsf{E} \, D_x^P.$$

• The infimal depth is the (essential) infimum of D_x

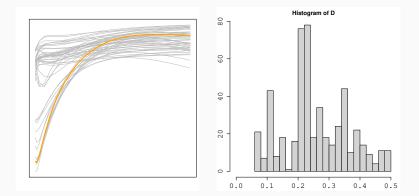
$$ID(x; P) = \inf_{t \in \mathcal{T}} hD(x(t); P_t),$$

that is the lower end-point of the support of D_x^P .

DEPTH DISTRIBUTION

The depth distribution of $x \in L^2(\mathcal{T})$ w.r.t. the random sample

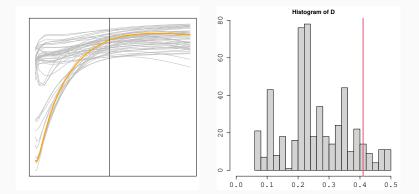
 D_{X}^{P} : $(\mathcal{T}, \mathcal{B}(\mathcal{T}), \lambda) \rightarrow [0, 1]$: $t \mapsto hD(x(t); P_{t})$



DEPTH DISTRIBUTION

The depth distribution of $x \in L^2(\mathcal{T})$ w.r.t. the random sample

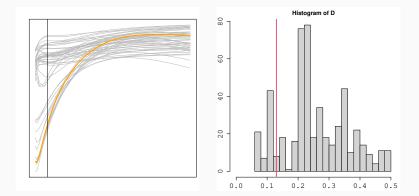
 D_{X}^{P} : $(\mathcal{T}, \mathcal{B}(\mathcal{T}), \lambda) \rightarrow [0, 1]$: $t \mapsto hD(x(t); P_{t})$



DEPTH DISTRIBUTION

The depth distribution of $x \in L^2(\mathcal{T})$ w.r.t. the random sample

 D_{X}^{P} : $(\mathcal{T}, \mathcal{B}(\mathcal{T}), \lambda) \rightarrow [0, 1]$: $t \mapsto hD(x(t); P_{t})$



Adaptive feature choice: Depth distribution

The *k*-integrated depth with $k \in \mathbb{R} \setminus \{0\}$

$$D^{k}(x; P) = \left(\int_{\mathcal{T}} (hD(x(t); P_{t}) + 1/2)^{k} d\lambda(t)\right)^{1/k} - 1/2$$
$$= \left(\mathsf{E} \left(D_{x}^{P} + 1/2\right)^{k}\right)^{1/k} - 1/2$$

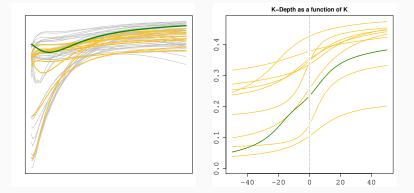
is, basically, the *k*-th moment of the depth distribution of *x*. We obtain a family of depths

- for k = 1 the usual integrated depth;
- as $k \to -\infty$ a version of the infimal depth;
- choice of k allows us to fine tune in practice.

(Nagy, Helander, Van Bever, Viitasaari, and Ilmonen, 2021)

TRAJECTORIES OF THE *k***-INTEGRATED DEPTHS**

The trajectories
$$k \mapsto D^k(x; P) = \left(\mathsf{E}\left(D_x^P + 1/2\right)^k\right)^{1/k} - 1/2$$



GENERAL FUNCTIONAL DEPTHS?

One can choose any (location) parameter L of the depth distribution

 $D_L(X;P) = L(D_X^P)$

to obtain a custom tailored depth functional. Examples are

- quantiles,
- trimmed means,
- M-estimators...

Or integrated quantiles for $q \in (0, 1)$ and $F_{x,P}$ the c.d.f. of D_x^P

$$L(D_x^P) = \int_0^q F_{x,P}^{-1}(u) \,\mathrm{d}\, u.$$

(Work in progress with López-Pintado, 2021+)

The resulting depths possess quite different properties.

Case in point: Sample version consistency and Condition 1.

A THEORETICAL ISSUE: CONSISTENCY

Let $P_n \in \mathcal{P}(\mathcal{F})$ be the (random) empirical measure of a random sample X_1, \ldots, X_n from P.

A depth D on space \mathcal{F} is

• consistent if

$$D(x; P_n) \xrightarrow[n \to \infty]{a.s.} D(x; P) \text{ for all } x \in \mathcal{F};$$

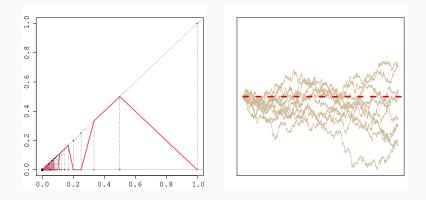
• uniformly consistent if

$$\sup_{x\in\mathcal{F}}|D(x;P_n)-D(x;P)|\xrightarrow[n\to\infty]{\text{a.s.}}0.$$

- → In *F* = ℝ^d, the halfspace / simplicial depth is uniformly consistent (empirical processes and the Vapnik-Červonenkis theory).
- → In function spaces uniform consistency requires new theories.
- → Functional depths are often not consistent uniformly.

INFIMAL (QUANTILE) DEPTHS ARE NOT CONSISTENT

ID is not consistent for, e.g., *P* the Wiener measure.



ID can be shown to be consistent under more restrictive conditions. (Gijbels and Nagy, 2015)

Theorem (Nagy and López-Pintado, 2021+) Suppose that

- $\mathcal{F} = \mathcal{C}(\mathcal{T})$, and
- the functional L: $\mathcal{P}(\mathcal{T}) \rightarrow [0, 1]$ is uniformly continuous for the weak topology on $\mathcal{P}(\mathcal{T})$.

Then the general functional depth based on L is uniformly consistent.

Corollary

- All (k-)integrated depths are uniformly consistent over \mathcal{F} , for any $P \in \mathcal{P}(\mathcal{F})$, for both $\mathcal{F} = L^2(\mathcal{T})$ and $\mathcal{F} = C(\mathcal{T})$. (Nagy et al., 2016; 2021)
- All integrated quantile depths are uniformly consistent over C(T), for $P \in \mathcal{P}(C(T))$ with smooth marginals. (Nagy and López-Pintado, 2021+)

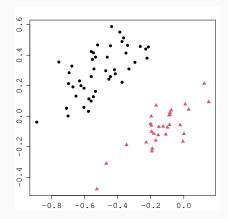
Theoretical properties of general functional depths, under appropriate assumptions on $L: \mathcal{P}(\mathcal{T}) \rightarrow [0, 1]$:

- Non-degeneracy (Condition 0), including quantitative versions;
- Maximality at the coordinate-wise median, reachable by continuous functions;
- Invariance and monotonicity properties;
- (Semi-)Continuity in both $x \in \mathcal{F}$ and $P \in \mathcal{P}(\mathcal{F})$;
- Uniform consistency also for imperfectly observed functional data, multivariate functional data, image and video data.

All this is true for both (*k*-)integrated depths and quantile integrated depths. (Nagy et al., 2016, 2021; Nagy and López-Pintado, 2021+)

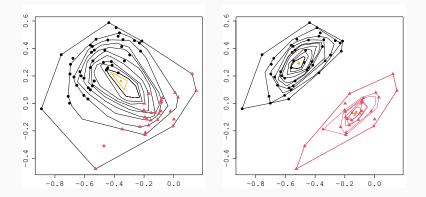
DEPTH (IN \mathbb{R}^d) IS NOT FOR MIXTURES

The depth suits well only for analyzing unimodal distributions



DEPTH (IN \mathbb{R}^d) **IS NOT FOR MIXTURES**

The depth suits well only for analyzing unimodal distributions



One further depth for functional data:

• *h*-depth (Cuevas et al., 2006)

$$D_{\kappa}(X; P) = \mathsf{E}_{X \sim P}\left[\kappa(\|X - X\|)\right]$$

estimated by

$$D_{\kappa}(x; P_n) = n^{-1} \sum_{i=1}^n \kappa(||x - X_i||).$$

Here, $\kappa \colon [0, \infty) \to [0, 1]$ is a continuous, non-increasing function with $\lim_{u\to\infty} \kappa(u) = 0$.

→ A density-like depth allowing for multiple "modes" in P.

Observation (Wynne and Nagy, 2021)

For "typical" choices of κ , the h-depth is equivalent with a special **kernel mean embedding** in an appropriate RKHS.

Consequences:

- Uniform consistency including rates of convergence;
- Consistency/rates of convergence of the induced deepest function;
- Uniform distributional asymptotics;
- All this also for imperfectly observed, or dependent data.

The characterization property:

For any $P \neq Q \in \mathcal{P}(\mathcal{F})$ there exists $x \in \mathcal{F}$ with $D_{\kappa}(x; P) \neq D_{\kappa}(x; Q)$.

(Random) functional depths:

Some **random functional depths** (Cuevas et al., 2007, Cuesta-Albertos and Nieto-Reyes, 2008) admit explicit forms, i.e. they do not need to be approximated.

What we know:

- Functional depth is a very active field of FDA,
- with many potential applications,
- and many depths have been proposed.
- The selection of a depth is crucial, and must be problem-specific.
- Theoretical properties of the depth must be observed.

Open problems:

- → Desiderata for the depth (affine invariance? convexity in function spaces?)
- → Statistical properties (finer asymptotics, bootstrap).
- → Applications to analysis?
- → How to choose a depth?

SELECTED LITERATURE

- Antonio Cuevas, Manuel Febrero, and Ricardo Fraiman. On the use of the bootstrap for estimating functions with functional data. *Comput. Statist. Data Anal.*, 51(2):1063–1074, 2006.
- [2] Ricardo Fraiman and Graciela Muniz. Trimmed means for functional data. Test, 10(2):419–440, 2001.
- [3] Sara López-Pintado and Juan Romo. On the concept of depth for functional data. J. Amer. Statist. Assoc., 104(486):718–734, 2009.
- [4] Stanislav Nagy, Irène Gijbels, Marek Omelka, and Daniel Hlubinka. Integrated depth for functional data: Statistical properties and consistency. ESAIM Probab. Stat., 20:95–130, 2016.
- [5] Stanislav Nagy, Sami Helander, Germain Van Bever, Lauri Viitasaari, and Pauliina Ilmonen. Flexible integrated functional depths. *Bernoulli*, 27(1):673–701, 2021.
- [6] Stanislav Nagy and Sara López-Pintado. Depth for functional data: Theoretical properties. *in preparation*, 2021.
- John W. Tukey. Mathematics and the picturing of data. In Proc. ICM, 1974, Vol. 2, pages 523–531. Canad. Math. Congress, Montreal, Que., 1975.
- [8] George Wynne and Stanislav Nagy. Statistical depth meets machine learning: Kernel mean embeddings and depth in functional data analysis. *arXiv preprint arXiv:2105.12778*, 2021.
- [9] Yijun Zuo and Robert Serfling. General notions of statistical depth function. Ann. Statist., 28(2):461–482, 2000.